Determining half-relationships with Polynesians

I recently got my cousin’s results to compare to my mother and my brothers.  This cousin’s father was my mother’s half-brother George, so a half-first cousin relationship.

Prior to making contact with my mother’s relatives I was thinking of having these cousins tested as a means to figure out who my mother’s biological father really was.  But a couple of months ago when I did make contact with these long lost relatives it was revealed that my mother’s biological father was Joseph Kaapuiki Akana, the man whom I doubted was my mother’s father based on his name (Akana is of Chinese origin) and the fact that my mother remembers her father being pure Hawaiian and her DNA composition does not support Chinese ancestry.  I thought that maybe testing these half-cousins would determine if their grandfather was my mother’s biological father.  But it is more complicated than I realized.

Like my mother’s father Joseph Kaapuiki Akana, George’s father was also Hawaiian.  George and my mother shared the same Hawaiian mother.

This is what the ISOGG Wiki Autosomal DNA Statistics page says about how much should be shared between a half-aunt and also to half-cousins.

Screen Shot 2015-12-29 at 7.17.17 PM

Combining with Blaine Bettinger’s Shared cM Project, the total shared for a half-aunt would range from 540cM to 1348cM, averaging 892cM.  The average is around the amount indicated by the ISOGG Wiki page.

For a half-first cousin, Blaine Bettinger’s Shared cM Project says it would range from 262cM to 1194cM, averaging 458cM.  Again, that average is what is indicated on the ISOGG Wiki page.

This is how GEDmatch.com compares my half-cousin to us.

Screen Shot 2015-12-29 at 7.33.09 PMIt is obviously on the high end, for a half-aunt while half-first cousin, not that extreme.  But we are talking of one example only.  There are more half-cousins that I could have test and probably will in the future.  And all of these cousins have had a grandfather that was Hawaiian, so I would expect their amounts to be high.

Comparing to non-endogamous groups, I compare my paternal aunt to her nephews and nieces and a great-nephew and great-niece on GEDmatch.

Screen Shot 2015-12-29 at 7.45.46 PM

My cousin Terri may share the lowest total among the 1st cousins but it does not seem that significantly different from the average 1700cM.  It is interesting to see that her largest segment is 104.7cM.  When I look at my half-first cousin and how much she shares with her half-aunt (my mother), the total is 1412.8cM, and largest segment is 103.3cM.  That figure can be misleading.  I have more cousins on my father’s side that I have yet to test and there may be other cousins who share less or more with our aunt than the cousins that have already tested.

If I take my aunt out of the equation, this is how the cousins compare to each other.

Screen Shot 2015-12-29 at 7.50.04 PM

A couple of my paternal 1st cousins share much less with each other than my half-cousin does with me and my brothers.

It will be awhile before I can get an ample amount of Polynesians who have close relatives tested to fully make a comparison.  Initially I wanted to see if testing half-cousins would help determine if my mother’s siblings were half or full siblings and when I was not certain that Joseph Kaapuiki Akana was her biological father.

It is clear now that any type of half-relationship is difficult to determine if the other parent is also Polynesian, and in our case Hawaiian.  My grandmother married 3 different Hawaiian men and so far from what I know, they have ties to geographically different places.

The endogamous nature just makes it hard to determine the relationship even if it is a close relationship.  It does not have to be a distant 3rd cousin and beyond to appear as a closer relationship.  Even with cousins (half or full) and half-siblings, they seem to appear on the higher end of the relationship, possibly giving a false prediction if the true relationship was not known.

Recent Founder’s Effect, bottlenecking and 6 Tahitian women on Pitcairn island

I finally got the autosomal results of a Pitcairn resident who has been a member of the Polynesian project for a year now.  Previously I had another member who is a Norfolk island descendant and whose ancestors moved to Norfolk but were originally from Pitcairn.  Another Norfolk descendant tested at another company, but his raw data were uploaded to GEDmatch.com in order to be compared.  Now having that this particular Pitcairn resident tested, I can make a comparison for these 3 people since they all have ties to Pitcairn.

 

HISTORY OF PITCAIRN ISLAND

Pitcairn was settled in 1790 by mutineers of the HMS Bounty and Tahitians1.  The initial population of 27 consisted of 9 mutineers, 6 Tahitian men and 11 Tahitian women along with an infant girl.  Only 6 of the mutineers and 6 Tahitian women would produce descendants.

Mutineers:
1) Fletcher Christian
2) Edward Ned Young
3) John Mills
4) William McCoy
5) Matthew Quintal
6) John Adams

Tahitian women:
1) Mauatua Maimiti
2) Teraura
3) Teio
4) Tevarua2
5) Vahineatua
6) Toofaiti

 

POPULATION GROWTH, DECREASE & RE-POPULATION

The population started with 27 people but only 12 of them would produce descendants.  By 1840 the population exceeded 100, and by the mid-1850s the community was outgrowing the island3.

On May 3, 1850 the entire community left for a 5 week trip and settled on the island of Norfolk on June 8.  Nearly 3 years later 16 of them returned to Pitcairn.

Screen Shot 2015-12-21 at 9.03.27 AM

 

EFFECTS WITH AUTOSOMAL DNA

I have mentioned in previous blog entries that eastern Polynesians are genetically less diverse than western Polynesians.  So it should be no surprise that Hawaiians and Maoris as well as Tahitians will come up as closer matches to each other despite sharing common ancestors 8 centuries ago.

Now we are looking at two things.  Firstly, a founding population where only 12 people produced offspring, and half of the 12 being Tahitian women, or eastern Polynesians.  And these 12 were not paired off equally.

Screen Shot 2015-12-21 at 9.32.29 AM

They married multiple times, some of them never produced descendants with their other spouses.

Secondly, there was a population bottleneck in 1859.

Screen Shot 2015-12-21 at 9.35.35 AM

In 1856 the population expanded to 193, then the entire population left.  That population was already interrelated just 66 years after the initial 12 founding people started the population.  They all left, but 16 of them returned.  Eventually, a few more returned but the remaining population continued life on Norfolk island while the rest of the Pitcairns were starting the population again. It would take only 23 years to repopulate the island increasing the population to 250.

 

ANALYZING A PITCAIRN RESIDENT’S AUTOSOMAL DNA

The Pitcairn resident descends from all of the 12 founding people.  No surprise, given that small amount plus that was just 225 years ago and 7 generations ago for this particular person.

Although I cannot show with a family tree how many times they descend from the 12 founding people due to size and the complexity of the tree, I decided to list the number of times they descend from each of the 12.

Screen Shot 2015-12-21 at 9.50.22 AM

This resident’s paternal grandparents are 2nd cousins one way, and 3rd cousins another way while their maternal grandparents were 2nd cousins two ways.  There are more ways that they are related going further back as well, but my genealogy software cannot pick up the multiple relationships and it seems to select the closest relationship but selected 2nd cousin once removed, so not sure which line it was picking up.  This person’s maternal grandfather was born on Pitcairn but there is no known genealogy for him.  For their other grandparents, here is who they descend from.  (Founding people in bold)

Paternal grandfather – Christopher Warren, son of George Warren whose mother was Agnes Christian, and Alice Butler whose mother was Alice McCoy.
Paternal grandmother – Mary Christian, daughter of Sidney Christian & Ethel Young.
Maternal grandmother – Ivy Young, daughter of William Young & Mercy Young.

Agnes Christian and Alice McCoy were 2nd cousins, great-granddaughters of Fletcher Christian and Mauatua.  Ivy Young’s parents William and Mercy Young were 2nd cousins two ways to each other.  Great-grandchildren of Edward N. Young and Toofaiti and of Fletcher Christian and Mauatua.

As confusing as it seems, you can imagine how would DNA show up.  After uploading the raw data to GEDmatch.com for further analysis, I immediately ran the “Are Your Parents Related” tool.

Screen Shot 2015-12-21 at 10.07.52 AM

It predicted 3.3 for the most recent common ancestor (MRCA).  Still not sure how to interpret GEDmatch’s MRCA estimation, but in reality, the most recent common ancestor would be their 2nd great-grandparents – Thursday October Christian II and Mary Polly Young.  And there were other Youngs as I previously mentioned and Christians as well.

When I ran my mother’s kit through that same tool, her largest segment was 13.9cM, and there were a total of 5 segments that would total 51.5cM.

Largest segment = 13.9 cM
Total of segments > 7 cM = 51.5 cM
Estimated number of generations to MRCA = 4.1

Unlike the Pitcairn resident whose largest segment was 24.7cM and with 11 segments.  My mother’s parents were from different islands and as far back as I was able to trace their ancestries, they did not intersect nor did their ancestors come remotely near to each other given that they were from 3 different islands.

I would love to get more Pitcairn residents to test, to see if there is any noticeable pattern using this tool, or David Pike’s ROH.  If there is, we definitely could use it in helping to determine a true close genetic match versus an endogamous one.

 

COMPARING TO NORFOLK DESCENDANTS

There are 2 particular matches to many of the Polynesian DNA project’s members and both of these 2 people are descendants of Norfolk residents.  I will refer to them as Norfolk #1 and Norfolk #2.

Norfolk #1’s maternal grandmother was from Norfolk and she was the daughter of Francis Nobbs and Ruth Christian.  Norfolk #2’s maternal grandfather was from there, and his parents were William Adams and Sarah Christian.

A further breakdown where I bold the founding people.

NORFOLK #1
Francis Nobbs’ ancestry, son of Alfred Nobbs & Mary Christian:
Paternal grandfather – George Nobbs
Paternal grandmother – Sarah Christian, daughter of Charles Christian & Tevarua
Maternal grandfather – Benjamin Christian, son of John Buffett & Mary Christian
Maternal grandmother – Eliza Quintal, daughter of John Quintal & Maria Christian

Sarah and Maria Christian were daughters of Charles Christian & Tevarua, while Mary Christian was their 1st cousin.

Ruth Christian’s ancestry, daughter of Isaac Christian & Miriam Young:
Paternal grandfather – Charles Christian, son of Fletcher Christian & Mauatua
Paternal grandmother – Tevarua, daughter of Teio
Maternal grandfather – William Young, son of Edward N. Young & Toofaiti
Maternal grandmother – Elizabeth Mills, daughter of John Mills & Vahineatua

NORFOLK #2
William Adams’ ancestry, son of John Adams & Caroline Quintal:
Paternal grandfather – George Adams, son of John Adams & Teio
Paternal grandmother – Polly Young, daughter of Edward N. Young & Toofaiti
Maternal grandfather – Arthur Quintal, son of Matthew Quintal & Tevarua
Maternal grandmother – Catherine McCoy, daughter of William McCoy & Teio

When comparing the two Norfolk descendants to the Pitcairn resident, I was surprised to see no overlapping segments.

Screen Shot 2015-12-21 at 1.36.43 PM

Screen Shot 2015-12-22 at 12.58.16 PM

It is interesting to see how for Norfolk #1, the largest segment is 40.85cM for the largest segment and a total of 134.5cM.  The largest segment is significant, and although Pitcairn & Norfolk #1 are related multiple ways, the closest known relationship makes them 4th cousin once removed.

Comparing Pitcairn to Norfolk #2, the largest segment is 27.3cM, which for Polynesians in general could be pretty distant.  Total shared is 95.1cM.  And just as with Norfolk #1, Norfolk #2 and Pitcairn are related multiple ways, but the closest relationship makes them 4th cousins.

At the moment I cannot compare Norfolk #1 and Norfolk #2, but I am trying to get one that taken care of in order to upload Norfolk #1’s raw data to GEDmatch for further analysis.

I was expecting to see the overlap at least when comparing to the Pitcairn resident given that their ancestors’ have been on the island since the beginning, but it goes to show how unpredictable and random DNA can be.

A list of all 3 and how many times they each descend from the following founding population.

Screen Shot 2015-12-21 at 1.46.23 PM

And while various Polynesians can be compared to all three of these people and may show overlapping segments, there is really no way to map these segments.  These 3 testees would match other project members based on segments inherited by one or more of these 6 Tahitian women that settled on Pitcairn.  And we all would have shared common ancestor(s) from at least 8 centuries ago.

Below I compare the Pitcairn resident to a Hawaiian, a Maori and a Cook Island Maori as well as my Hawaiian mother.  Incidentally, there is a project member whose father was from Tahiti, yet that person does not come up as a match.

(default setting)

Screen Shot 2015-12-21 at 3.40.11 PM

(1+cM setting)

Screen Shot 2015-12-21 at 3.48.43 PM

 

Comparing Norfolk #1 with the same people with the exception of not being a match to the Cook Island Maori.

(default setting)

Screen Shot 2015-12-21 at 3.41.18 PM

(1+cM setting)

Screen Shot 2015-12-21 at 3.51.14 PM

Norfolk #2 did not test at FTDNA but at 23andme, and although their raw data was uploaded to GEDmatch.com, all the others being compared were not uploaded except for my mother’s raw data.

For additional information about the DNA study of the descendants of the Mutiny on the Bounty, see ‘Mutiny on the Bounty’: the genetic history of Norfolk Island reveals extreme gender-biased admixture.

Footnotes

1. History of the Pitcairn Islands.
2. Pitcairn Settlers lists an additional Tahitian woman known as Sully, as the wife of Matthew Quintal and the mother of Matthew Jr., John, Arthur, Sarah and Jane Quintal. Another source, as well as the Pitcairn resident who got DNA tested, claims that there were only 6 Tahitian women of whom they descend from.  There was no mention of Sully, although Tevarua is listed as being married to Matthew Quintal and the parents of  Matthew Jr., John, Arthur, Sarah, and Jane Quintal.
3. Historical Population of Pitcairn.

The randomness of autosomal DNA

Now that Ancestry is able to show how many centimorgans and number of segments are shown, I was comparing my top two closest matches.  They are listed as “lkauhi” and “Frank”.  They are under the 2nd cousin category predicted in the 2nd – 3rd cousin range.

Screen Shot 2015-12-02 at 1.55.19 PM

Prior to my mother getting DNA tested, I had no idea exactly how close they would really be.   Now that my mother got DNA tested and I figured out who my mother’s biological parents were, I was able to construct a diagram.  “lkauhi” is on my grandfather’s side while Frank is on my grandmother’s side.

How Frank & “lkauhi” are related to me.

My mother Judy is a 2nd cousin to “lkauhi”.  That makes me and “lkauhi” 2nd cousins once removed.  While Frank and I are 2nd cousins, because his mother and my mother are 1st cousins.

Here is how much Frank and I share and how much “lkauhi” and I share.

Screen Shot 2015-12-02 at 1.53.14 PM

Screen Shot 2015-11-26 at 10.00.35 PM

224 centimorgans is what “lkauhi” and I share

And although my mother shares 439cM with Frank while sharing 430cM with “lkauhi” (not shown in any diagram), the amount shared seems pretty high for a 2nd cousin.  However, we are talking about Hawaiians whose ancestors have gone through repeated founder’s effect which resulted in our high shared amounts.  She in return managed to pass unto me more of her father’s DNA so that when compared with “lkauhi” we end up sharing more compared to Frank who is in my generation and on my grandmother’s side of the family.  Unfortunately my grandparents are not alive to get them DNA tested for a true comparison.

Also, both of these people have not transferred over to GEDmatch so I am unable to get a better comparison.  This reminds me of what my cousins said about how much I look a lot like our uncle, and that both my mother and I really look like my grandfather Joseph Kaapuiki.  Maybe it is something genetic?  If my mother shared a lot with “lkauhi”, it could be because we inherited more from Elena Kauhi, my mother’s paternal grandmother.

The good thing about all of this is that it confirms that Joseph Akana fka Joseph Kaapuiki was my mother Judy’s biological father, since Joseph’s mother was Elena Kauhi.  And “lkauhi’s paternal grandfather Johnathan Kauhi was a brother to Elena Kauhi.

Both of these closest matches are from each of my maternal grandparents’ side.  Frank is from my grandmother Rose Kanae’s side while “lkauhi” is from my grandfather Joseph Kaapuiki’s mother Elena Kauhi’s side.

Botocudo ancient DNA sample uploaded on GEDmatch

Felix Immanuel, a software professional at Hewlett-Packard based out of Canberra, Australia who has a Bachelor of Engineering in Computer Science and a Master of Science in Forensic Computing and Cyber Security from University of South Australia, has been uploading a bunch of ancient DNA to GEDmatch.com.  The most recent uploads were samples taken from skulls of two extinct Botocudo (Brazil) men.  I blogged about it in December 2014.

https://hawaiiandna.wordpress.com/2014/12/12/polynesian-mtdna-in-botocudo-of-brazil/

At that time, they hypothesized a few ways how the Polynesian motif could have made it into the genome of these now extinct Botocudo tribe.  But recently in Two ancient human genomes reveal Polynesian ancestry among the indigenous Botocudos of Brazil (http://www.ncbi.nlm.nih.gov/pubmed/25455029), they talk about the hypotheses again and how they came to the conclusion that these samples are definitely Polynesian.

One thing that was consistently repeated, was how the skulls analyzed had no detectable Native American ancestry.  They say, “[w]e find that the genomic ancestry is Polynesian, with no detectible Native American component.”   That “all the genetic data point towards two individuals with Polynesian ancestry and no detectable Native American ancestry.” And they continued again saying that a “clustering analyses suggest that they have no detectable Native American ancestry and share the same components as the Polynesian population.”

The two male individual samples used, known as Bot15 and Bot17, presented a combination of mitochondrial DNA (mtDNA) variants common in present day Oceanian populations.

They pointed out a few hypotheses that was mentioned in the other paper, and that “the 1862-1864 AD Peru-Polynesia slave trade can be excluded, given that the 14C calibrated dates for the skulls predate the beginning of this trade.”  Because these skulls have been radiocarbon dated, the dates that they came up for Bot15 was 1479 – 1708 AD and 1730 – 1804 AD, and for Bot17 was 1496 – 1842 AD.  So the fact that the Peru-Polynesia slave trade occurred after the death of these people excluded the hypothesis that Polynesians were brought over during that slave trade.

Also, the Madagascar-Brazil slave trade hypothesis has been excluded due to the recent genomic data that demonstrated that the Malagasy ancestors admixed with African populations prior to the slave trade, and no such ancestry is detected in the Botocudo sample.  Madagascar was peopled by Southeast Asian and not Polynesian populations.

And finally, trade involving Euroamerican ships in the Pacific only began after 1760 AD.  By 1760 AD, both Bot15 and Bot17 were already deceased with a probability of 0.92 and 0.81, respectively, making this scenario unlikely.

These two samples analyzed had no Native American component detected.  Felix was able to extract SNPs from the raw data to come up with C-PH3092, and  C-Z31878, which are Melanesian in origin and the C haplogroup is common in eastern Polynesia.  The mtDNA haplogroups were B4a1a1a and B4a1a1.  B4a1a1a is pretty common throughout Polynesia especially in eastern Polynesia.  And most importantly these samples are a match only to eastern Polynesians.  There is no doubt that these particular samples are Polynesians.  Question is, how did they get there?  Did they manage to produce offspring with the local Botocudo groups like the Crenaques, Nac-Nuc, Minia-Jirunas, Gutcraques, Nac-Reques, Pancas, Manhangiréns or Incutcrás?  Or did they have offspring but they never survived?  Were these samples that were found the actual people who traveled directly from Polynesia?  Or did they arrive as a group and intermarried within their own group of Polynesians but later were found among the other Botocudo people?   And why travel thousands of miles over mountains and crossing rivers, possibly going through or bypassing the Pantanal that borders Bolivia and Brazil and continue to head towards the east?

We have other evidence like the kumara [sweet potato] or ‘uala [Hawaiian word for sweet potato] that originated from South America, and not to mention our many oral traditions of all the famous travelers who went abroad to Kahiki [foreign lands; Tahiti] and towards ka hikina [the east] where the rising of the sun is.  Travelers like Kuali’i, Hema, Kaha’i, Wahieloa, Laka and Luanu’u. Now DNA is showing the scientific community what we have known based on our oral traditions.

Now that Felix uploaded both of these samples up on GEDmatch.com, we see that both of the samples matches a few of us [both admixed and non-admixed] Hawaiians (including my mother), Maori, and a Cook Island Maori.  No surprise that eastern Polynesians are a match, given how they lack genetic diversity much more than the older western Polynesians. But it may also suggest, if not confirm, that it was specifically part of the expansion of eastern Polynesians.  But was there another expansion that late in the 1600s?  Another not so surprising thing about these matches is that there may be small segment matches, but when utilizing GEDmatch’s graph when comparing ONE TO ONE, we can still see small segments of full identical region for a few of these matches.

Bot17,Brazil,0.4ky1
Kit # F999964
mtDNA – B4a1a1
Y DNA – C-Z31878 (C1b2 [2015])

Bot15,Brazil,0.4ky
Kit # F999963
MtDNA – B4a1a1a
Y DNA – C-PH3092 (C1b2 [2015])

You can check out Felix’s blog for other ancient DNA uploaded. http://www.fi.id.au/

Also the supplemental information can be accessed here.

Footnotes

1. Y haplogroup C Botocudo sample is carbon-dated to 1419-1477 AD – Ray Banks

Tiny segments from the same common ancestors

Disclaimer: This post demonstrates the use of 1+cM when comparing specific groups of people in order to see patterns of multiple descent from a few ancestors.  It should not be used to validate connections with matches, particularly in this example where connections are beyond a genealogical time frame reaching at least up to 500 years.

Recently I have been comparing both western Polynesian (Tongan and Samoan) and eastern Polynesian (Hawaiian and Maori) matches.  I compared western Polynesians among themselves, and  did the same thing with eastern Polynesians comparing them among themselves.  Then I compared the two groups to each other.

To those who are not familiar with Polynesian origins and/or are new to reading my blog, I will recap.  The ancestors of Polynesians originated from the Melanesia area and thrived there for thousands of years. Thousands of years later a group of “Austronesians” originating from Southeast Asia moved into the area, intermingled briefly and continued to move into western Polynesia where Polynesian culture was born.  At least a couple of thousand of years would pass before they would continue to expand further eastward.  As Polynesians moved from west to east, their genome became less diverse due to repeated founder’s effects and bottle necking.

oceania

I analyzed my mother’s results and compared her to a Hawaiian (orange), and a Maori (blue) below.  The Hawaiian is her top match, sharing a total of 693.60cM, longest block 15.52cM, consisting of 158 segments.  The Maori is her 4th top match sharing a total of 517.90cM, longest block 18.08cM, consisting of 119 segments.  FTDNA counts all the tiny segments as low as 1cM once the criteria of a match is met, which is why the number of segments is high.

tinyseg-mom

With the default at 5+cM I did not see anything unusual other than ordinary small segment matches.  But when I reduced the setting down to 1+cM (above), you can see a lot of tiny segments resembling a comb.  The slightly bigger gaps are just the missing teeth of a comb.  Some of these patterns begin to appear at 3+cM, although most do not appear until you reduce it down to 1+cM.  In my mother’s example above I show only chromosomes 1 – 20 since there were no segments that looked like a comb on the other chromosomes.

Then I looked at a Maori woman’s results (below) and compared hers to other Maoris and one Hawaiian.  She also shows the missing teeth at 1+cM, but only in a few areas.  Some areas have the comb pattern while other areas seem random.  The random segments could be IBS (Identical by State) or IBD (Identical by Descent).  Polynesians lack genetic diversity, particularly eastern Polynesians more than western Polynesians, so the random looking segments could be both IBS and IBD segments.

tinyseg-mary

Then I looked at two Tongan men and compared them to other Tongans and Samoans.  With Tongans & Samoans there seem to be more randomness.  A few of the tiniest segments may be close to each other, but nothing resembling too much like my mother’s results, a definite comb-pattern.  Take the purple and green colors for example for this one Tongan man below.  Notice how on some chromosomes they seem to be closer together while on others it just looks random.  Again, these are only using the bare minimum 1+cM.

tinyseg-peni

The other Tongan example.

tinyseg-keni

As you can see, it is hard to look for patterns that resembles a comb, and instead you see random colors all over the chromosomes.  What was interesting to see was how little X these Tongans had.  Unlike with the Maoris and Hawaiians, many of them shared multiple segments with each other.

But what does all of this mean?  These are very small island populations.  They have had repeated emigration from these small islands that resulted in a series of founder’s population.  There there was also bottle necking that occurred a few times.  All of these combined would leave only a few closely related ancestors to populate and repopulate new areas every time.

So the multiple, very small segments that represents a comb with missing teeth is the result of people descending from just a few ancestors who contributed that particular segment, but was inherited from multiple lines going back to the same ancestor over and over again.

Below is an image where I compare my mother with two Samoans (yellow & green) and three Tongans (orange, blue & purple).  There seems to be more randomness, however, there are a few of those comb patterns.

tiny-mom&western

Notice how the X chromosome is much more full, unlike what we saw when comparing the western Polynesians (Tongans & Samoans) among themselves. The yellow color belongs to a Samoan woman. The fact that women have 2 X chromosomes may be the reason why there is a long match versus using two Tongan men whose matches included two women in their examples above.  But these are Polynesians, so you would expect more of a match on the X.  My observance of matches for the past 2 years was limited to only my mother being compared to others, which means I have seen a lot of X matches for her, and the same for myself and my brother.

From what I am noticing so far is that these patterns look like what is mentioned in research papers about Polynesian genome and the loss of heterozygosity going from west to east.  The last place in Polynesia to be settled was in the east, ending at the extreme points of the Polynesian triangle, namely Rapa Nui (Easter Island) in the south east, Aotearoa (New Zealand) to the south west, and the Hawaiian islands in the north.  This explains why my mother and the Maori woman have less random looking tiny segments compared to the Tongans and Samoans.  And if we compare western and eastern Polynesians to each other, we may see some randomness but not as much as we would see with western Polynesians alone.  Other types of Polynesians getting DNA tested would help to exhibit any other additional patterns that I cannot currently see with the majority of Hawaiians and Maoris getting tested.

Loss of heterozygosity – from Western Polynesia to Eastern Polynesia

Genetic research on Polynesians will frequently mention the loss of heterozygosity.  This is more noticeable when comparing eastern Polynesians to western Polynesians.

oceania

Map outlining migratory paths of Austronesian speaking populations, including estimated dates. Adapted from Bellwood et al., (2011) “Are ‘Cultures’ Inherited? Multidisciplinary Perspectives on the Origins and Migrations of Austronesian-Speaking Peoples Prior to 1000 BC.” [doi: 10.137/journal.pone.0035026.g001

Polynesian populations are relatively homogenous both phenotypically and genetically. Over a span of 3,200 years they moved throughout the Pacific, and unlike in Europe and other large continents, they did not mix with other populations due to isolation.  These small founder populations have experienced several bottleneck effects, which further caused this loss of heterozygosity ending with the settlement of eastern Polynesia.  Polynesians’ lack of genetic diversity is less evident in western  Polynesia where initial settlement began.  Hawai’i, New Zealand and Easter Island are considered to be eastern Polynesia, and these places were the last places of Polynesia to be settled.

Recently I have been able to look at the autosomal matches among Samoans and Tongans of western Polynesia.  Previously, I have been only studying Hawaiian matches and noticed that top matches were both Hawaiians and Maori people.  Looking at Samoans and Tongans was very interesting as I now could compare the two different regions.

My mother is 80% Hawaiian, while I am 40%.  And as admixed as I am, I still get 1st – 3rd cousin predictions on Family Tree DNA (FTDNA), while on 23andme I get 2nd cousin and 3rd to distant cousin predictions.  The centimorgan totals that I show with my matches reach as high as 369cM on FTDNA, and 161cM on 23andme.  For my mother, 693cM on FTDNA and 376cM on 23andme.  I see the same happening with Maoris, ranging between 300cM – 700cM (FTDNA) for the top 20 people.  And for a non-admixed Hawaiian, their top matches are in the 600 – 700cM range.   An admixed Polynesian would logically have lower totals. But even an admixed person can still have a fairly high amount of totals shared, as when I am comparing myself being less than half Hawaiian.

When comparing two Tongans, the highest that they shared was 335cM.   A Samoan compared to another Samoan was 366cM.  And both of these Tongans and Samoans had their remaining top matches in the range of 100cM to 200cM.  Many of their matches are the same Hawaiians and Maori that match each other at a much higher total.  It is amazing to see these autosomal matches and how diverse the western Polynesians are, or rather how Hawaiians and Maoris are not as diverse.  And even if it is an admixed Hawaiian or Maori, the matches to each other are still pretty high, and as high as what non-admixed western Polynesians would have to each other.

When comparing the longest block (largest segment) with Tongans and Samoans, they seem to rarely get close to 15cM, averaging around 10cM.  Anything more than that could indicate a possible closer relationship or perhaps a specific common geographic origin.  The Hawaiians and Maoris usually range between 10cM – 15cM for the largest segment, but can go as high as 28cM which is usually in admixed Hawaiians and Maoris compared to each other.  In other words, all Polynesians in general will have high totals exceeding 100cM, but whose largest segment rarely exceeding 10cM.

I look forward to more western Polynesians getting tested so we can see if there is any pattern to specific islands in their own island group, something I have been trying to do with Hawaiians with the few haplogroups that there are for Polynesians.  What also needs to be analyzed are people from Tahiti and the Marquesas being that they were key dispersal points for eastern Polynesians.  I managed to only see the results of one admixed Tahitian woman and her match totals are identical to mine when comparing totals.  I am curious to find out what non-admixed Tahitians will show, if it is more identical to eastern Polynesians, or to western Polynesians.

Small segments on the X; male vs. female

Kitty Cooper put out a blog post where she entitled it What Can the X Chromosome Tell Us About the Importance of Small Segments? by Kathy Johnson.   Kathy Johnson had gone through the males in her project and began analyzing and compared to females, determining how much of the females were producing false positives vs. the men.  Because not many men would get a lot of X-matches.  This seems to be an ongoing investigation with various people blogging about the validity of phasing, or rather how effective if not necessarily is it to weed out any false positive matches. It seems to be based on FamilyTreeDNA’s X-matches where they include many tiny segments as little as 1cM.  And the more substantial matches with 10cM or more tends to reduce the actual X-matches significantly, which would be due to the lack of phasing.  You can read more about it on Kitty’s blog, although most of the discussion about evaluating all of these matches took place outside of the blog and on Facebook’s “International Society of Genetic Genealogy” page.

That made me curious, because others have expressed how some men had little to no X-matches.  This was not my situation at all , and went through my list of 9 pages on FTDNA and counted 47 X-matches out of the total 89 matches that I have.  I noticed that one of them was actually an X match on my father’s side of matches, a Filipino.  I knew that was wrong.  So when I looked at it, no X match showed up in the chromosome browser until I reduced the threshold down to 1+cM where I saw a 1.9cM, a false match.

Aside from one woman mislabeled as a male in my matches, I actually have 20 men and 26 females as X-matches, not counting that Filipino false match.  That’s half of my matches.  My mother has 93 X-matches out of her 159 matches, so not that much more than me.  Could that indicate that my mother’s X-matches are more, or less of false matches?  It’s an interesting idea to see how men can have less false matches but we are looking at Polynesian matches which just adds something else to it.

I know that I do have a lot of my matches below 5cM on the X chromosome, so I used dnagedcom.com’s ADSA (autosomal DNA segment analyzer) to at least look at my ICW (in common with) matches on the X, but I had increased the threshold to 700SNPs and 10cM.

Screen Shot 2014-12-20 at 12.30.11 PM

I was thinking that not only would it be easier to use this tool by instantly seeing my X-matches above a specific threshold, but it would also compare me with others with whom we share the same segments, therefore decreasing the chances of false matches.  But taking into consideration that we are referring to Polynesians.  How would that affect it really?

I cannot determine from comparing my own to my mother’s X-matches if they would be false matches or not. Our problem, lack of documentation, lack of genetic diversity and the unpredictability of the X chromosome itself just to mention a few.

I have recently begun testing my first cousins on my non-Hawaiian side in order to take a closer look at the X chromosome and how that is passed on knowing the X path, that is how it is passed on unrecombined from father to daughter versus mother to children.  I also felt that knowing how it is passed on, it would be easier to distinguish which part of the chromosome was inherited from my grandfather versus my grandmother.  And not until I begin testing relatives from each of my grandparents’ side, I will not be able to fully distinguish all of them with the rest of the other 22 pairs of chromosomes.

Having said that, I cannot see how these X-matches, at least among Polynesians would be consist of a lot of false segments or not.  Especially when there are long segments with the more distant people, e.g., Maoris or Samoans and Tongans, of which I do have X matches with.  But the Samoans and Tongans are not included in the ICW due to the fact that I increased the threshold to exclude anything below 10cM.

I also used Gedmatch’s ONE TO MANY to get all my matches, sorted them by the largest segment on the X and just looked at how many were above 10cM.  There were only 20.

Screen Shot 2014-12-20 at 8.21.57 PM

I did the same for my brother, he got 17 above 10cM.  I also looked at other Polynesian men just to compare and the numbers varied, usually not exceeding 20 with 10cM minimum threshold.  It is still all interesting although it is hard to decipher how much of it is true for Polynesians.  Hopefully as more Polynesians get tested, we will start to notice more differences, or confirm that we just all have a high amount of X-matches.

Polynesia Category – AncestryDNA.com

Earlier this year I tested with Ancestry.com (or AncestryDNA.com) since I’ve been noticing non-Polynesians coming up with this new category.  This is way after the fact the research does not specify a Polynesia component, but rather a Melanesian and Asian or East Asian or Southeast Asian component.  I have seen other Asians, specifically Filipinos coming up with decent amount of this Polynesia category, as well as those of European descent coming up with small traces of Polynesia.

Under their Polynesia category, it mentions the sampling size was 18, and that one of the samples showed 11% Scandinavian.  A larger sampling size would yield better results especially in this case where one of the 18 samples had some European admixture.  This was enough to cause those with Scandinavian ancestry to come up with small traces of Polynesia, and in return cause people to wonder how they could have ever had such ancestry in their lineage to a point where some people create possible scenarios how they could have inherited this less than 0.1% Polynesia.

Screen Shot 2014-12-15 at 9.07.24 AM

 

Their Polynesia category was one of those categories where they had the least amount of samples.

Screen Shot 2014-12-15 at 9.42.16 AM

After receiving my results, as I suspected due to the fact that I am half Filipino, my percentage of the Polynesia category was pretty inflated.  It showed that I had 57% Polynesia versus 34% Asia East.  Knowing that my mother is 80% Hawaiian, and that my father was pure Filipino, I figured the amount of Asia that I showed 34% was missing 16% that was thrown into the Polynesia category.  That would in turn leave me with 41% Polynesia.  My mother is 20% European, and according to Ancestry I am 8% Europe, which seems to be about right.  The other DNA companies I tested at showed more than 10% Europe.  But adding the 41% plus the 8% comes out about right, 49%.

Recently I had a cousin on my father’s side of the family test, and she got her results.  She too is half Filipino, while her other half is completely Europe.  I expected her to show some Polynesia but I did not even guess how much that would be.  I was surprised to see 16% Polynesia for her, which is the same amount I had deducted from my own.  In fact, she shows 33% Asia while I show 34% Asia, and more specifically we both share 31% Asia East.  So they both are consistent.

Screen Shot 2014-12-15 at 9.03.53 AM

Although my mother was given an AncestryDNA kit, she has yet to take it.  But I can easily guess that she will easily show 20% Europe and 80% Polynesia.  Any other person who is Polynesian but admixed with some other Asian it may include part of their Asian component into Polynesia.  Maybe the fact that we are Filipinos and they have ancestral ties is why some of it is classified as such.  I did have another paternal cousin tested, she is half Filipino and half Japanese so not sure what type of results that will yield with the Polynesia category.  Will it be the same and show her as 16% Polynesia?  Or will it give her more due to her Japanese ancestry, or is that different enough to not be classified under the Polynesia category?

To find out more about AncestryDNA’s ethnicity/ancestry categories, you can read through their Ethnicity Estimate White Paper.

Pili kūpuna

Pili kūpuna.  A term much more fitting than “endogamous” which the dictionary defines as, “the custom of marrying only within the limits of a local community, clan or tribe.”

From a Hawaiian perspective: pili ma nā kūpuna. Adhering by way of forebears.  Basically what it translates to is a relation to the ancestors; that is, more distant relationship which belonged to the granparentsʻ generation or before.  Based on two words, pili and kupuna.

 

Screen Shot 2014-12-02 at 2.09.33 PMThere is an ʻolelo noʻeau (proverb) that says: he ʻohana kiko moa.  “Family that hatches like chickens.”  It was an expression used to mock those who mated with no regard to relationship.  In ancient times, intermarriage was encouraged among the high chiefs, not for the commoners.

This emphasizes the fact that Hawaiians were not necessarily intermarrying on purpose, as it was strictly reserved for the chiefs.  More so after the arrival of the missionaries in 1820 and since then even the chiefs stopped intermarrying, followed by an influx of immigrants from various parts of the world such as the U.S.A., Europe and Asia.  And although we are aware of who are relatives are, and the fact that we do not necessarily intermarry our own known close relatives, we can still come up as a close cousin match.  Which is why endogamy is not really an accurate term, since it was not really the custom.  I cannot speak for other Polynesians, but definitely not among Hawaiians who have been isolated for at least 500 years.  And we are still closely related on a genetic level to Maoris of New Zealand and other Polynesians.

Pili kupuna definitely fits as to how Polynesians relate to each other, culturally and of course genetically.

Not all endogamy is the same

Kitty Cooper’s recent blog post “using Ashkenazi Jewish DNA to find family” talks about how to look for key signs when it comes to finding a true connection to your matches.  I recently blogged about the problems with Polynesian matches and endogamy, just as Ashkenazi Jews will encounter.  I had two different blog entries.  One was “ADSA and Triangulation” where triangulation is used to possibly figure out if you and two other matches can help each other figuring out your common ancestor.  And “Endogamy and Multiple Smaller Segments” where I discovered the actual problem with Polynesian DNA and finding matches.

In Kitty’s entry, she did give tips for finding real AJ matches. Whenever people talk about endogamy, they always bring up AJ as the most prominent group, but the fact is any endogamous group will have its own peculiarity.  I noticed that with Colonial families they have to have what they refer to as “sticky segments”, or segments on a chromosome that basically lingers on for awhile, generation after generation.  I have seen how these segments can begin and end at exactly the same start/end points, which is very interesting.

AJ come from a founding population that started with a small number of people.  Many other endogamous groups started in the same fashion for the most part, particularly colonial families.  With colonial families and Acadians of French Canada, you can see the constant intermarrying within families generation after generation.

DNA Research says that Polynesians slowly moved eastward creating these series of founder effects.  By the time they reached central eastern Polynesia, they were getting genetically less diverse.  They thrived for centuries developing their culture, and then more emigration occurred to the farthest parts of the Polynesian triangle.  The Maori (New Zealand), Hawaiians and Rapa Nui people (Easter Island) are expected to be a subset of the genetic variability in eastern Polynesia, which in turn is expected to be a subset from western Polynesia, which itself is a subset of Melanesia.  A series of founder effects is what lead to this low genetic diversity.

Whenever people talk about endogamy and use AJ as an example when it comes to calculating relationships, or even reading what Kitty Cooper wrote for tips in working with AJ DNA, I keep reminding people that not all endogamous groups are the same, such as the case with Polynesian DNA.  So as Polynesians moved from the west towards the east, and then finally to the most farthest corners of the Polynesian triangle, where Hawaii is at its vertex angle, New Zealand and Easter Island at its base angles, genetic diversity diminishes.

Bottleneck is another feature enhancing the degree of endogamy with Polynesians.  There may have been several bottleneck effects that took place among various island group of Polynesia.  For Hawaii, the last known bottleneck occurred in the late 19th century.  When Captain Cook, a British arrived in the Hawaiian islands in 1778, he estimated the population to be around 300,000.  Scholars will mention anywhere from 800,000 to nearly a million in the islands at the time of European contact.  The 1890 Hawaiian Kingdom census counted 40,622 aboriginal Hawaiians.  The 2000 US Census had counted 401,000 Native Hawaiians.  So the current Kanaka (Native Hawaiian) population comes from the 40,622 that existed 124 years ago.

When thinking about the lack of genetic diversity given the entire history, it should not be surprising that, as in my case being Hawaiian, that not only will I have many close matches with other Hawaiians, but with other Polynesians too.  More specifically what we have been seeing, is a close genetic relationship with the Maoris.  That is understandable since both of our groups were the last places to be colonized by Polynesians.

So what does that mean for Polynesians working on their DNA matches?  It is okay to read about other methods that endogamous groups use to find their matches, but be aware that we have much closer matches unlike other groups.  If you are on FTDNA, you will find a lot of 1st – 3rd and 2nd – 3rd cousin matches.  I get 3 pages of 2nd – 3rd cousin matches while my mother has about a page and a half of 1st – 2nd cousins, just over two pages of 1st – 3rd cousin and five pages of 2nd – 3rd cousin matches.  At 23andme, I get 2nd cousins, and 2nd – 3rd cousins and two pages of 2nd – 4th cousins.  This is what to be expected, and again a true closer relationship will be distinguishable by looking at the number of segments.  We may share a lot when it comes to total centimorgans in order to get 2nd – 3rd cousins, but a real 2nd to 3rd cousin match should not have as many segments and these multiple segments will average anywhere between 8cM – 15cM.  This means that the match is endogamous.

When doing triangulations you will see that with your matches there is a fair amount of shared segments with other people of whom will share that matching segment.  With non-endogamous groups, you need to first verify that both of your matches are sharing that same segment with each other in order to determine that you all have a common ancestor.  For Polynesians, this is often the case, and probably descended multiple times from that same ancestor.  That may seem significant and on the right path for finding a connection however its extremely low genetic diversity coupled with the fact that many records did not exist until recently usually produces no results.

Endogamy and multiple smaller segments

The past several months after nearly a year of getting into genetic genealogy I finally started to study a bit more about my endogamous matches rather than ignore them for a long time and discouraging other Polynesians to not look into their matches. I learned how to figure out a true match or what could be a true match versus an endogamous one, which would make the relationship much more distant even beyond a genealogical time frame. Analyzing DNA matches in an endogamous group is already a challenge, but unlike other endogamous groups, dealing with Polynesian endogamy means lack of genetic diversity which translates to a large amount of shared centimorgans, smaller largest segment and multiple segments producing relationships significantly much closer than what we really are which could be very distant (over more than 5 centuries) for many of our matches. I have been noticing an average of 8cM – 15cM for the largest segment even though the total can be anywhere from 100cM – 200cM.  From FamilyTreeDNA my mother gets up to four pages of matches totaling from as low as 178.42cM to 693.60cM.  On GedMatch, the totals are different, not counting the first three listed which are her children.  From the fourth one on down is where the real puzzling matches are. The diagram below is sorted by the total shared.  And with these matches the threshold is different.  It is defaulted at 5cM, 500SNPs.

My mother's top matches based by total shared.

My mother’s top matches based by total shared.

When I sort it by the largest segment, 50.2cM is the highest, then there are a lot averaging somewhere between 10cM – 15cM (not all are shown in graph below) yet with high totals.

My mother's top matches sorted by the largest matching segment.

My mother’s top matches sorted by the largest matching segment.

The large total shared having the largest segment averaging 10cM – 15cM is expected in endogamy but for Polynesians, since we come from multiple common ancestors over centuries, even for different island nations who can claim descent to a specific person or persons such as  Mauikisikisi, or Maui-tiki-tiki (Hawaiian: Mauiki’iki’i),  or ‘Aikanaka/Kaitangata, Hema, Kaha’i/Tafa’i/Tafaki, Wahieloa/Vahieroa, and Laka/Rata, it is no surprise that our totals are still high, probably higher than the other endogamous groups such as Ashkenazi Jews, or Quakers, etc.

Sorted by predicted generation.

Sorted by predicted generation.

Below is a diagram from FamilyTreeDNA and I wanted to show by choosing 5 Maoris, comparing them to my mother.  I chose them because Hawaiians like myself and my mother have a much more distant relationship with the Maoris, given that Maoris and Hawaiians as with other Polynesians have been separated and isolated some time in the 13th century.  It was up until that time where they regularly gathered at the sacred religious spot at Taputapuatea located on the island of Ra’iatea in the Tahitian islands.  Then that stopped suddenly, and there was no more interaction among the different island nations. FamilyTreeDNA has a different criteria but because of this, it seems to work for us Polynesians  only because bringing down the threshold (usually to 3+cM, not necessarily 1+cM) it allows you to see the segments which are usually closer to the much larger ones but have small missing matched segments.

5 Maori matches

5 Maori matches

To the far left is the number of segments, and I filled in to the right the total number of segments plus the largest matching segment for each person.  I also reduced the threshold to show how in endogamous populations, what was once a compound matching segment was broken up just slightly.  This may work well for Polynesians but may or may not apply to other endogamous groups.  I definitely would discourage others from non-endogamous groups to do this. The breakup can be a bit more obvious in places like on the beginning of Chromosome 10 (purple), or chromosome 16 (yellow) as well as on the X chromosome (orange). To further illustrate, I took just chromosome 16 of the last person on that list (yellow) where a Maori woman shared a total of 468.97cM, but the largest segment is only 12.80cM.  That means there are many other small segments that totaled the 468.97cM.

Analyzing chromosome 16

Analyzing chromosome 16

Looking carefully at chromosome 16, you can see what I mean by the break up.  The first matching segment consisting of 5.31cM runs from 1074819 – 3561270.  Then there’s a break, then continues with 3989366 – 6372359, then another break.  It continues again from 6690251 – 8317168.  So if we look in between the breaks, we have the following.

3561270 – 3989366

6372359 – 6690251

On the graph it looks very close, just a small break.  What it looks like is that this once was a long segment that got broken up but due to intermarrying time and time again within a small population, the breaks were not only small but the reduction of the actual match over time was a slower one. This is what it looks like at the default 5+cM setting, and then the image after that I had set it at 10+cM.

5cM setting with the 5 Maori matches

5cM setting with the 5 Maori matches

10+cM setting with the 5 Maoris

10+cM setting with the 5 Maoris

I recently had my mother’s half-1st cousin Sam get DNA tested.  Sam’s father and my maternal grandmother were half-siblings.  Getting this cousin tested would verify if my mother was the biological daughter of the woman in question, although by the time Sam took the test, my mother admitted to remembering as a 5 year old being told by her mother that she was adopted.  Either that or she just was in denial for the past 25 years as I did the research on her mother, and only now decided to come clean about it.  But Sam’s results came back last week and this is how it showed up on FamilyTreeDNA. Screen Shot 2014-09-20 at 9.49.33 AM   You can see that the largest segment/longest block is only 13.34cM even though predicted 1st – 2nd cousins with a total of 501.35cM.  A half first cousin would share about 425cM, or 6.25%.  GedMatch shows a different total, the largest segment being 14cM, still the average as I mentioned that I am seeing. Below is what it looks like on GedMatch. Screen Shot 2014-09-20 at 9.50.39 AM The total is 216cM, and on 24 segments.  I previously mentioned the number of segments as a clue with Polynesian endogamy, not only are the segments not very large but the number of segments are numerous.  In this case, 24 of them.  To compare, I have a 1st cousin once removed named Andrew on my non-Hawaiian side, but he is also Hawaiian.  We share 380cM, largest segment 42.7cM on 18 segments.  Another first cousin Leroy, (non-Hawaiian) is also a 1st cousin once removed to Andrew.  They share 439cM, 71cM is the largest segment and also 18 segments.  The difference in the number of segments is obvious where endogamy produces more segments.

Comparing my cousins and what my mom has with Sam, and her two highest matches on GedMatch.  One of those matches is my friend’s father, and the other is a Maori man who says my mother is his top match on GedMatch.

Andrew & me – 1st cousins once removed:
Total shared – 380cM
Largest segment – 42.7cM
Number of segments – 18

Andrew & Leroy – 1st cousins once removed:
Total shared – 439cM
Largest segment – 71cM
Number of segments – 18

Leroy & me – 1st cousins:
Total shared – 754cM Largest segment – 80.5cM
Number of segments 30

My mother & Sam – half 1st cousins (but not biological since my mother was adopted):
Total shared – 216cM
Largest segment – 14cM
Number of segments – 24

My mother & my friend’s father:
Total shared – 300.5cM
Largest segment – 20.4cM
Number of segments – 30

My mother & Maori man:
Total shared – 140.7cM
Largest segment – 16.3cM
Number of segments – 16

And although the number of segments for first and second cousins as well as the total shared may vary from person to person, the first 3 examples comparing myself and my cousins are the average expected for a first cousin and a first cousin once removed relationship.  But it is also clear that in the case of the Maori man who is from New Zealand and whose ancestors have been there since the beginning of their time, just as my mother and our ancestors have been in the Hawaiian islands since the first people arrived in Hawai’i about 1,500 years ago, the number of segments will help in figuring out, depending on how distant the relationship is, if it is a true relationship or an endogamous one where the actual connection is much further and/or is through multiple common ancestors. So the size of the largest segment is an indicator within endogamous groups if the relationship is closer or not.  Anything near 20cM or below it compared to a huge amount for the total shared indicates that the relationship is much further back.  That can easily be determined by the amount of segments.  The more segments you have, the more times you share common ancestors with your match. Had I not known this up until last week, I would have easily assumed that my mother and Sam are actually half first cousins.  But this actually shows, based on the number of segments and definitely by the small size of the largest segment that they are not closely related at all.