More Genetic Communities at AncestryDNA

Finally, after asking AncestryDNA to split their Genetic Communities at least into 2 main regions (eastern Polynesia vs. western Polynesia, they come up with a major update, not just for Polynesians but for other places in the Pacific Islands, Asia, and America.

The former “Hawaii, Tonga & Samoa” genetic community has been broken into 4 different communities.

The maps that go with these genetic communities are not the best given how small these islands and atolls are on the map.  Not to mention how distant one island nation is to the next, especially when you see how AncestryDNA decides to group them together.

The Polynesian Islands genetic community is basically the same map that they had for the former Hawaii, Tonga & Samoa genetic community.

The Cook Island & French Polynesia genetic community covers a vast area.  But the area covered is nothing like comparing the distance between New Zealand & Hawaii.

The Hawaii & New Zealand genetic community basically just highlights the remaining extreme points of the Polynesian triangle (minus Easter Island), with Hawaiʻi to the north and New Zealand to the southwest.

The broader Hawaii, Tonga, Samoa, Fiji & New Zealand genetic community’s map does not even zoom in.  You will have to zoom in to see a better view of the islands within this genetic community.

And finally, the Tonga, Samoa & Fiji genetic community would also include other western Polynesian islands like Niue, Tokelau, and Tuvalu.  What is interesting, although it is no surprise, that they also included Fiji into this group.  Historically Fiji had some role with initial populating of Remote Oceania.  I have seen a few Fijian matches not just for me but also with my mother and cousins.

It would be nice if in the future they really can fine-tune these genetic communities a bit more.  While we know that eastern Polynesian people come from western Polynesia centuries ago, those of us from Hawaiʻi, Aotearoa (New Zealand) and Rapa Nui (Easter Island) know that we had ancestors coming from what is known as French Polynesia (Tahitian archipelago and the Marquesas) as recent as 800 years ago.

So while I did not get the French Polynesia (with Cook Islands) community, my mother did.  She does have more matches with western Polynesians (Samoans and Tongans) than I do.  She also has more matches with Fijians than I do, so I am not surprised she got the Tonga, Samoa & Fiji and also the Hawaii, Tonga, Samoa, Fiji & New Zealand genetic communities.

We will see as time goes by how my own genetic communities get updated.

Recent Founder’s Effect, bottlenecking and 6 Tahitian women on Pitcairn island

I finally got the autosomal results of a Pitcairn resident who has been a member of the Polynesian project for a year now.  Previously I had another member who is a Norfolk island descendant and whose ancestors moved to Norfolk but were originally from Pitcairn.  Another Norfolk descendant tested at another company, but his raw data were uploaded to GEDmatch.com in order to be compared.  Now having that this particular Pitcairn resident tested, I can make a comparison for these 3 people since they all have ties to Pitcairn.

 

HISTORY OF PITCAIRN ISLAND

Pitcairn was settled in 1790 by mutineers of the HMS Bounty and Tahitians1.  The initial population of 27 consisted of 9 mutineers, 6 Tahitian men and 11 Tahitian women along with an infant girl.  Only 6 of the mutineers and 6 Tahitian women would produce descendants.

Mutineers:
1) Fletcher Christian
2) Edward Ned Young
3) John Mills
4) William McCoy
5) Matthew Quintal
6) John Adams

Tahitian women:
1) Mauatua Maimiti
2) Teraura
3) Teio
4) Tevarua2
5) Vahineatua
6) Toofaiti

 

POPULATION GROWTH, DECREASE & RE-POPULATION

The population started with 27 people but only 12 of them would produce descendants.  By 1840 the population exceeded 100, and by the mid-1850s the community was outgrowing the island3.

On May 3, 1850 the entire community left for a 5 week trip and settled on the island of Norfolk on June 8.  Nearly 3 years later 16 of them returned to Pitcairn.

Screen Shot 2015-12-21 at 9.03.27 AM

 

EFFECTS WITH AUTOSOMAL DNA

I have mentioned in previous blog entries that eastern Polynesians are genetically less diverse than western Polynesians.  So it should be no surprise that Hawaiians and Maoris as well as Tahitians will come up as closer matches to each other despite sharing common ancestors 8 centuries ago.

Now we are looking at two things.  Firstly, a founding population where only 12 people produced offspring, and half of the 12 being Tahitian women, or eastern Polynesians.  And these 12 were not paired off equally.

Screen Shot 2015-12-21 at 9.32.29 AM

They married multiple times, some of them never produced descendants with their other spouses.

Secondly, there was a population bottleneck in 1859.

Screen Shot 2015-12-21 at 9.35.35 AM

In 1856 the population expanded to 193, then the entire population left.  That population was already interrelated just 66 years after the initial 12 founding people started the population.  They all left, but 16 of them returned.  Eventually, a few more returned but the remaining population continued life on Norfolk island while the rest of the Pitcairns were starting the population again. It would take only 23 years to repopulate the island increasing the population to 250.

 

ANALYZING A PITCAIRN RESIDENT’S AUTOSOMAL DNA

The Pitcairn resident descends from all of the 12 founding people.  No surprise, given that small amount plus that was just 225 years ago and 7 generations ago for this particular person.

Although I cannot show with a family tree how many times they descend from the 12 founding people due to size and the complexity of the tree, I decided to list the number of times they descend from each of the 12.

Screen Shot 2015-12-21 at 9.50.22 AM

This resident’s paternal grandparents are 2nd cousins one way, and 3rd cousins another way while their maternal grandparents were 2nd cousins two ways.  There are more ways that they are related going further back as well, but my genealogy software cannot pick up the multiple relationships and it seems to select the closest relationship but selected 2nd cousin once removed, so not sure which line it was picking up.  This person’s maternal grandfather was born on Pitcairn but there is no known genealogy for him.  For their other grandparents, here is who they descend from.  (Founding people in bold)

Paternal grandfather – Christopher Warren, son of George Warren whose mother was Agnes Christian, and Alice Butler whose mother was Alice McCoy.
Paternal grandmother – Mary Christian, daughter of Sidney Christian & Ethel Young.
Maternal grandmother – Ivy Young, daughter of William Young & Mercy Young.

Agnes Christian and Alice McCoy were 2nd cousins, great-granddaughters of Fletcher Christian and Mauatua.  Ivy Young’s parents William and Mercy Young were 2nd cousins two ways to each other.  Great-grandchildren of Edward N. Young and Toofaiti and of Fletcher Christian and Mauatua.

As confusing as it seems, you can imagine how would DNA show up.  After uploading the raw data to GEDmatch.com for further analysis, I immediately ran the “Are Your Parents Related” tool.

Screen Shot 2015-12-21 at 10.07.52 AM

It predicted 3.3 for the most recent common ancestor (MRCA).  Still not sure how to interpret GEDmatch’s MRCA estimation, but in reality, the most recent common ancestor would be their 2nd great-grandparents – Thursday October Christian II and Mary Polly Young.  And there were other Youngs as I previously mentioned and Christians as well.

When I ran my mother’s kit through that same tool, her largest segment was 13.9cM, and there were a total of 5 segments that would total 51.5cM.

Largest segment = 13.9 cM
Total of segments > 7 cM = 51.5 cM
Estimated number of generations to MRCA = 4.1

Unlike the Pitcairn resident whose largest segment was 24.7cM and with 11 segments.  My mother’s parents were from different islands and as far back as I was able to trace their ancestries, they did not intersect nor did their ancestors come remotely near to each other given that they were from 3 different islands.

I would love to get more Pitcairn residents to test, to see if there is any noticeable pattern using this tool, or David Pike’s ROH.  If there is, we definitely could use it in helping to determine a true close genetic match versus an endogamous one.

 

COMPARING TO NORFOLK DESCENDANTS

There are 2 particular matches to many of the Polynesian DNA project’s members and both of these 2 people are descendants of Norfolk residents.  I will refer to them as Norfolk #1 and Norfolk #2.

Norfolk #1’s maternal grandmother was from Norfolk and she was the daughter of Francis Nobbs and Ruth Christian.  Norfolk #2’s maternal grandfather was from there, and his parents were William Adams and Sarah Christian.

A further breakdown where I bold the founding people.

NORFOLK #1
Francis Nobbs’ ancestry, son of Alfred Nobbs & Mary Christian:
Paternal grandfather – George Nobbs
Paternal grandmother – Sarah Christian, daughter of Charles Christian & Tevarua
Maternal grandfather – Benjamin Christian, son of John Buffett & Mary Christian
Maternal grandmother – Eliza Quintal, daughter of John Quintal & Maria Christian

Sarah and Maria Christian were daughters of Charles Christian & Tevarua, while Mary Christian was their 1st cousin.

Ruth Christian’s ancestry, daughter of Isaac Christian & Miriam Young:
Paternal grandfather – Charles Christian, son of Fletcher Christian & Mauatua
Paternal grandmother – Tevarua, daughter of Teio
Maternal grandfather – William Young, son of Edward N. Young & Toofaiti
Maternal grandmother – Elizabeth Mills, daughter of John Mills & Vahineatua

NORFOLK #2
William Adams’ ancestry, son of John Adams & Caroline Quintal:
Paternal grandfather – George Adams, son of John Adams & Teio
Paternal grandmother – Polly Young, daughter of Edward N. Young & Toofaiti
Maternal grandfather – Arthur Quintal, son of Matthew Quintal & Tevarua
Maternal grandmother – Catherine McCoy, daughter of William McCoy & Teio

When comparing the two Norfolk descendants to the Pitcairn resident, I was surprised to see no overlapping segments.

Screen Shot 2015-12-21 at 1.36.43 PM

Screen Shot 2015-12-22 at 12.58.16 PM

It is interesting to see how for Norfolk #1, the largest segment is 40.85cM for the largest segment and a total of 134.5cM.  The largest segment is significant, and although Pitcairn & Norfolk #1 are related multiple ways, the closest known relationship makes them 4th cousin once removed.

Comparing Pitcairn to Norfolk #2, the largest segment is 27.3cM, which for Polynesians in general could be pretty distant.  Total shared is 95.1cM.  And just as with Norfolk #1, Norfolk #2 and Pitcairn are related multiple ways, but the closest relationship makes them 4th cousins.

At the moment I cannot compare Norfolk #1 and Norfolk #2, but I am trying to get one that taken care of in order to upload Norfolk #1’s raw data to GEDmatch for further analysis.

I was expecting to see the overlap at least when comparing to the Pitcairn resident given that their ancestors’ have been on the island since the beginning, but it goes to show how unpredictable and random DNA can be.

A list of all 3 and how many times they each descend from the following founding population.

Screen Shot 2015-12-21 at 1.46.23 PM

And while various Polynesians can be compared to all three of these people and may show overlapping segments, there is really no way to map these segments.  These 3 testees would match other project members based on segments inherited by one or more of these 6 Tahitian women that settled on Pitcairn.  And we all would have shared common ancestor(s) from at least 8 centuries ago.

Below I compare the Pitcairn resident to a Hawaiian, a Maori and a Cook Island Maori as well as my Hawaiian mother.  Incidentally, there is a project member whose father was from Tahiti, yet that person does not come up as a match.

(default setting)

Screen Shot 2015-12-21 at 3.40.11 PM

(1+cM setting)

Screen Shot 2015-12-21 at 3.48.43 PM

 

Comparing Norfolk #1 with the same people with the exception of not being a match to the Cook Island Maori.

(default setting)

Screen Shot 2015-12-21 at 3.41.18 PM

(1+cM setting)

Screen Shot 2015-12-21 at 3.51.14 PM

Norfolk #2 did not test at FTDNA but at 23andme, and although their raw data was uploaded to GEDmatch.com, all the others being compared were not uploaded except for my mother’s raw data.

For additional information about the DNA study of the descendants of the Mutiny on the Bounty, see ‘Mutiny on the Bounty’: the genetic history of Norfolk Island reveals extreme gender-biased admixture.

Footnotes

1. History of the Pitcairn Islands.
2. Pitcairn Settlers lists an additional Tahitian woman known as Sully, as the wife of Matthew Quintal and the mother of Matthew Jr., John, Arthur, Sarah and Jane Quintal. Another source, as well as the Pitcairn resident who got DNA tested, claims that there were only 6 Tahitian women of whom they descend from.  There was no mention of Sully, although Tevarua is listed as being married to Matthew Quintal and the parents of  Matthew Jr., John, Arthur, Sarah, and Jane Quintal.
3. Historical Population of Pitcairn.

Tiny segments from the same common ancestors

Disclaimer: This post demonstrates the use of 1+cM when comparing specific groups of people in order to see patterns of multiple descent from a few ancestors.  It should not be used to validate connections with matches, particularly in this example where connections are beyond a genealogical time frame reaching at least up to 500 years.

Recently I have been comparing both western Polynesian (Tongan and Samoan) and eastern Polynesian (Hawaiian and Maori) matches.  I compared western Polynesians among themselves, and  did the same thing with eastern Polynesians comparing them among themselves.  Then I compared the two groups to each other.

To those who are not familiar with Polynesian origins and/or are new to reading my blog, I will recap.  The ancestors of Polynesians originated from the Melanesia area and thrived there for thousands of years. Thousands of years later a group of “Austronesians” originating from Southeast Asia moved into the area, intermingled briefly and continued to move into western Polynesia where Polynesian culture was born.  At least a couple of thousand of years would pass before they would continue to expand further eastward.  As Polynesians moved from west to east, their genome became less diverse due to repeated founder’s effects and bottle necking.

oceania

I analyzed my mother’s results and compared her to a Hawaiian (orange), and a Maori (blue) below.  The Hawaiian is her top match, sharing a total of 693.60cM, longest block 15.52cM, consisting of 158 segments.  The Maori is her 4th top match sharing a total of 517.90cM, longest block 18.08cM, consisting of 119 segments.  FTDNA counts all the tiny segments as low as 1cM once the criteria of a match is met, which is why the number of segments is high.

tinyseg-mom

With the default at 5+cM I did not see anything unusual other than ordinary small segment matches.  But when I reduced the setting down to 1+cM (above), you can see a lot of tiny segments resembling a comb.  The slightly bigger gaps are just the missing teeth of a comb.  Some of these patterns begin to appear at 3+cM, although most do not appear until you reduce it down to 1+cM.  In my mother’s example above I show only chromosomes 1 – 20 since there were no segments that looked like a comb on the other chromosomes.

Then I looked at a Maori woman’s results (below) and compared hers to other Maoris and one Hawaiian.  She also shows the missing teeth at 1+cM, but only in a few areas.  Some areas have the comb pattern while other areas seem random.  The random segments could be IBS (Identical by State) or IBD (Identical by Descent).  Polynesians lack genetic diversity, particularly eastern Polynesians more than western Polynesians, so the random looking segments could be both IBS and IBD segments.

tinyseg-mary

Then I looked at two Tongan men and compared them to other Tongans and Samoans.  With Tongans & Samoans there seem to be more randomness.  A few of the tiniest segments may be close to each other, but nothing resembling too much like my mother’s results, a definite comb-pattern.  Take the purple and green colors for example for this one Tongan man below.  Notice how on some chromosomes they seem to be closer together while on others it just looks random.  Again, these are only using the bare minimum 1+cM.

tinyseg-peni

The other Tongan example.

tinyseg-keni

As you can see, it is hard to look for patterns that resembles a comb, and instead you see random colors all over the chromosomes.  What was interesting to see was how little X these Tongans had.  Unlike with the Maoris and Hawaiians, many of them shared multiple segments with each other.

But what does all of this mean?  These are very small island populations.  They have had repeated emigration from these small islands that resulted in a series of founder’s population.  There there was also bottle necking that occurred a few times.  All of these combined would leave only a few closely related ancestors to populate and repopulate new areas every time.

So the multiple, very small segments that represents a comb with missing teeth is the result of people descending from just a few ancestors who contributed that particular segment, but was inherited from multiple lines going back to the same ancestor over and over again.

Below is an image where I compare my mother with two Samoans (yellow & green) and three Tongans (orange, blue & purple).  There seems to be more randomness, however, there are a few of those comb patterns.

tiny-mom&western

Notice how the X chromosome is much more full, unlike what we saw when comparing the western Polynesians (Tongans & Samoans) among themselves. The yellow color belongs to a Samoan woman. The fact that women have 2 X chromosomes may be the reason why there is a long match versus using two Tongan men whose matches included two women in their examples above.  But these are Polynesians, so you would expect more of a match on the X.  My observance of matches for the past 2 years was limited to only my mother being compared to others, which means I have seen a lot of X matches for her, and the same for myself and my brother.

From what I am noticing so far is that these patterns look like what is mentioned in research papers about Polynesian genome and the loss of heterozygosity going from west to east.  The last place in Polynesia to be settled was in the east, ending at the extreme points of the Polynesian triangle, namely Rapa Nui (Easter Island) in the south east, Aotearoa (New Zealand) to the south west, and the Hawaiian islands in the north.  This explains why my mother and the Maori woman have less random looking tiny segments compared to the Tongans and Samoans.  And if we compare western and eastern Polynesians to each other, we may see some randomness but not as much as we would see with western Polynesians alone.  Other types of Polynesians getting DNA tested would help to exhibit any other additional patterns that I cannot currently see with the majority of Hawaiians and Maoris getting tested.

Loss of heterozygosity – from Western Polynesia to Eastern Polynesia

Genetic research on Polynesians will frequently mention the loss of heterozygosity.  This is more noticeable when comparing eastern Polynesians to western Polynesians.

oceania

Map outlining migratory paths of Austronesian speaking populations, including estimated dates. Adapted from Bellwood et al., (2011) “Are ‘Cultures’ Inherited? Multidisciplinary Perspectives on the Origins and Migrations of Austronesian-Speaking Peoples Prior to 1000 BC.” [doi: 10.137/journal.pone.0035026.g001

Polynesian populations are relatively homogenous both phenotypically and genetically. Over a span of 3,200 years they moved throughout the Pacific, and unlike in Europe and other large continents, they did not mix with other populations due to isolation.  These small founder populations have experienced several bottleneck effects, which further caused this loss of heterozygosity ending with the settlement of eastern Polynesia.  Polynesians’ lack of genetic diversity is less evident in western  Polynesia where initial settlement began.  Hawai’i, New Zealand and Easter Island are considered to be eastern Polynesia, and these places were the last places of Polynesia to be settled.

Recently I have been able to look at the autosomal matches among Samoans and Tongans of western Polynesia.  Previously, I have been only studying Hawaiian matches and noticed that top matches were both Hawaiians and Maori people.  Looking at Samoans and Tongans was very interesting as I now could compare the two different regions.

My mother is 80% Hawaiian, while I am 40%.  And as admixed as I am, I still get 1st – 3rd cousin predictions on Family Tree DNA (FTDNA), while on 23andme I get 2nd cousin and 3rd to distant cousin predictions.  The centimorgan totals that I show with my matches reach as high as 369cM on FTDNA, and 161cM on 23andme.  For my mother, 693cM on FTDNA and 376cM on 23andme.  I see the same happening with Maoris, ranging between 300cM – 700cM (FTDNA) for the top 20 people.  And for a non-admixed Hawaiian, their top matches are in the 600 – 700cM range.   An admixed Polynesian would logically have lower totals. But even an admixed person can still have a fairly high amount of totals shared, as when I am comparing myself being less than half Hawaiian.

When comparing two Tongans, the highest that they shared was 335cM.   A Samoan compared to another Samoan was 366cM.  And both of these Tongans and Samoans had their remaining top matches in the range of 100cM to 200cM.  Many of their matches are the same Hawaiians and Maori that match each other at a much higher total.  It is amazing to see these autosomal matches and how diverse the western Polynesians are, or rather how Hawaiians and Maoris are not as diverse.  And even if it is an admixed Hawaiian or Maori, the matches to each other are still pretty high, and as high as what non-admixed western Polynesians would have to each other.

When comparing the longest block (largest segment) with Tongans and Samoans, they seem to rarely get close to 15cM, averaging around 10cM.  Anything more than that could indicate a possible closer relationship or perhaps a specific common geographic origin.  The Hawaiians and Maoris usually range between 10cM – 15cM for the largest segment, but can go as high as 28cM which is usually in admixed Hawaiians and Maoris compared to each other.  In other words, all Polynesians in general will have high totals exceeding 100cM, but whose largest segment rarely exceeding 10cM.

I look forward to more western Polynesians getting tested so we can see if there is any pattern to specific islands in their own island group, something I have been trying to do with Hawaiians with the few haplogroups that there are for Polynesians.  What also needs to be analyzed are people from Tahiti and the Marquesas being that they were key dispersal points for eastern Polynesians.  I managed to only see the results of one admixed Tahitian woman and her match totals are identical to mine when comparing totals.  I am curious to find out what non-admixed Tahitians will show, if it is more identical to eastern Polynesians, or to western Polynesians.

Small segments on the X; male vs. female

Kitty Cooper put out a blog post where she entitled it What Can the X Chromosome Tell Us About the Importance of Small Segments? by Kathy Johnson.   Kathy Johnson had gone through the males in her project and began analyzing and compared to females, determining how much of the females were producing false positives vs. the men.  Because not many men would get a lot of X-matches.  This seems to be an ongoing investigation with various people blogging about the validity of phasing, or rather how effective if not necessarily is it to weed out any false positive matches. It seems to be based on FamilyTreeDNA’s X-matches where they include many tiny segments as little as 1cM.  And the more substantial matches with 10cM or more tends to reduce the actual X-matches significantly, which would be due to the lack of phasing.  You can read more about it on Kitty’s blog, although most of the discussion about evaluating all of these matches took place outside of the blog and on Facebook’s “International Society of Genetic Genealogy” page.

That made me curious, because others have expressed how some men had little to no X-matches.  This was not my situation at all , and went through my list of 9 pages on FTDNA and counted 47 X-matches out of the total 89 matches that I have.  I noticed that one of them was actually an X match on my father’s side of matches, a Filipino.  I knew that was wrong.  So when I looked at it, no X match showed up in the chromosome browser until I reduced the threshold down to 1+cM where I saw a 1.9cM, a false match.

Aside from one woman mislabeled as a male in my matches, I actually have 20 men and 26 females as X-matches, not counting that Filipino false match.  That’s half of my matches.  My mother has 93 X-matches out of her 159 matches, so not that much more than me.  Could that indicate that my mother’s X-matches are more, or less of false matches?  It’s an interesting idea to see how men can have less false matches but we are looking at Polynesian matches which just adds something else to it.

I know that I do have a lot of my matches below 5cM on the X chromosome, so I used dnagedcom.com’s ADSA (autosomal DNA segment analyzer) to at least look at my ICW (in common with) matches on the X, but I had increased the threshold to 700SNPs and 10cM.

Screen Shot 2014-12-20 at 12.30.11 PM

I was thinking that not only would it be easier to use this tool by instantly seeing my X-matches above a specific threshold, but it would also compare me with others with whom we share the same segments, therefore decreasing the chances of false matches.  But taking into consideration that we are referring to Polynesians.  How would that affect it really?

I cannot determine from comparing my own to my mother’s X-matches if they would be false matches or not. Our problem, lack of documentation, lack of genetic diversity and the unpredictability of the X chromosome itself just to mention a few.

I have recently begun testing my first cousins on my non-Hawaiian side in order to take a closer look at the X chromosome and how that is passed on knowing the X path, that is how it is passed on unrecombined from father to daughter versus mother to children.  I also felt that knowing how it is passed on, it would be easier to distinguish which part of the chromosome was inherited from my grandfather versus my grandmother.  And not until I begin testing relatives from each of my grandparents’ side, I will not be able to fully distinguish all of them with the rest of the other 22 pairs of chromosomes.

Having said that, I cannot see how these X-matches, at least among Polynesians would be consist of a lot of false segments or not.  Especially when there are long segments with the more distant people, e.g., Maoris or Samoans and Tongans, of which I do have X matches with.  But the Samoans and Tongans are not included in the ICW due to the fact that I increased the threshold to exclude anything below 10cM.

I also used Gedmatch’s ONE TO MANY to get all my matches, sorted them by the largest segment on the X and just looked at how many were above 10cM.  There were only 20.

Screen Shot 2014-12-20 at 8.21.57 PM

I did the same for my brother, he got 17 above 10cM.  I also looked at other Polynesian men just to compare and the numbers varied, usually not exceeding 20 with 10cM minimum threshold.  It is still all interesting although it is hard to decipher how much of it is true for Polynesians.  Hopefully as more Polynesians get tested, we will start to notice more differences, or confirm that we just all have a high amount of X-matches.

Polynesia Category – AncestryDNA.com

Earlier this year I tested with Ancestry.com (or AncestryDNA.com) since I’ve been noticing non-Polynesians coming up with this new category.  This is way after the fact the research does not specify a Polynesia component, but rather a Melanesian and Asian or East Asian or Southeast Asian component.  I have seen other Asians, specifically Filipinos coming up with decent amount of this Polynesia category, as well as those of European descent coming up with small traces of Polynesia.

Under their Polynesia category, it mentions the sampling size was 18, and that one of the samples showed 11% Scandinavian.  A larger sampling size would yield better results especially in this case where one of the 18 samples had some European admixture.  This was enough to cause those with Scandinavian ancestry to come up with small traces of Polynesia, and in return cause people to wonder how they could have ever had such ancestry in their lineage to a point where some people create possible scenarios how they could have inherited this less than 0.1% Polynesia.

Screen Shot 2014-12-15 at 9.07.24 AM

 

Their Polynesia category was one of those categories where they had the least amount of samples.

Screen Shot 2014-12-15 at 9.42.16 AM

After receiving my results, as I suspected due to the fact that I am half Filipino, my percentage of the Polynesia category was pretty inflated.  It showed that I had 57% Polynesia versus 34% Asia East.  Knowing that my mother is 80% Hawaiian, and that my father was pure Filipino, I figured the amount of Asia that I showed 34% was missing 16% that was thrown into the Polynesia category.  That would in turn leave me with 41% Polynesia.  My mother is 20% European, and according to Ancestry I am 8% Europe, which seems to be about right.  The other DNA companies I tested at showed more than 10% Europe.  But adding the 41% plus the 8% comes out about right, 49%.

Recently I had a cousin on my father’s side of the family test, and she got her results.  She too is half Filipino, while her other half is completely Europe.  I expected her to show some Polynesia but I did not even guess how much that would be.  I was surprised to see 16% Polynesia for her, which is the same amount I had deducted from my own.  In fact, she shows 33% Asia while I show 34% Asia, and more specifically we both share 31% Asia East.  So they both are consistent.

Screen Shot 2014-12-15 at 9.03.53 AM

Although my mother was given an AncestryDNA kit, she has yet to take it.  But I can easily guess that she will easily show 20% Europe and 80% Polynesia.  Any other person who is Polynesian but admixed with some other Asian it may include part of their Asian component into Polynesia.  Maybe the fact that we are Filipinos and they have ancestral ties is why some of it is classified as such.  I did have another paternal cousin tested, she is half Filipino and half Japanese so not sure what type of results that will yield with the Polynesia category.  Will it be the same and show her as 16% Polynesia?  Or will it give her more due to her Japanese ancestry, or is that different enough to not be classified under the Polynesia category?

To find out more about AncestryDNA’s ethnicity/ancestry categories, you can read through their Ethnicity Estimate White Paper.

Polynesian mtDNA in Botocudo of Brazil

Back in mid-September Roberta Estes had a blog entry Native American Mitochondrial Haplogroups.  It’s basically a list of mitochondrial haplogroups that exists among Native Americans.  But what caught my eye was the Polynesian motif – B4a1a1.  She wrote, “B4a1a1 – found in skeletal remains of the now extinct Botocudos (Aimores) Indians of Brazil, thought to perhaps have arrived from Polynesia via the slave trade.  This haplogroup is found in 20% of the mtDNA of Madagascar. Goncalves 2013” and “B4a1a1a – found in skeletal remains of the now extinct Botocudos (Aimores) Indians of Brazil, thought to perhaps have arrived from Polynesia via the slave trade.  This haplogroup is found in 20% of the mtDNA of Madagascar. Goncalves 2013.”   And although there is the actual research out there, it started with an article back in April 2013 titled, “DNA study links indigenous Brazilians to Polynesians.”  Although the article’s title itself only mentions a link, it can be confusing to the reader and can be misleading once you begin reading through it.

The article quoted Lisa Matisoo-Smith, a molecular anthropologist at the University of Otago in Dunedin, New Zealand where she said, “But to call that haplogroup Polynesian is a bit of a misnomer,”  since the haplogroup is known to be in populations as far west as in Madagascar.  The actual research can be found here, Identification of Polynesian mtDNA haplogroups in remains of Botocudo Amerindians from Brazil. It basically says that “Here we report the identification of mitochondrial sequences belonging to haplogroups characteristic of Polynesians in DNA extracted from ancient skulls of the now extinct Botocudo Indians from Brazil.”   She does not seem to have been referring to the actual Polynesian motif but the fact that the research cited the mutations that is defined as the Polynesian motif.

The paper questions how did the presence of a Polynesian mtDNA show up in the gene pool of an extinct Brazilian Amerindian group who lived in the interior of Brazil?  There are specific mutations occurring on the mitochondrial which identifies it as the Polynesian motif,  and considering the evolutionary history of the Polynesian motif which is associated with the Austronesian expansion and the settling of Polynesia being much more recent than the peopling of the Americas.  Why hypothesizing how the introduction of the Polynesian motif could have entered into South America, the article says in part, “….considering an ancient Paleoamerican origin of the Botocudo haplotypes, we should expect new ‘private’ mutations to have appeared.  On the other hand, because we did not sequence the whole mtDNA, we cannot rule out the existence of such variations in the coding region.”

What is interesting to note is that is it not certain that these two skulls that they have analyzed were actual Polynesians or not. That is due to the fact that there was never a full sequencing test done on those two skulls that came up with the mutations that indicate the Polynesian motif.  Instead, only HVR1, HVR2 and typed specific mutations on the coding region were sequenced.  The findings mention specifically:  6719C, 15746G, 14022G and 12239T. These specific mutations on the coding region not only exists in my own mtDNA results (B4a1a1a3, now known as B4a1a1c) but so does a friend of mine who is identified as having the Malagasy motif. The paper already mentioned how these two skulls could have come back with such a haplogroup is possibly through the slave trade, originally from Madagascar.  And there were trips originating from Madagascar that eventually took these slaves into Brazil.

So the real question is were these two skulls the result of that recent slave trade originating from Madagascar, or did somehow a very few handful of Polynesians made their way all the way to Brazil?  The Botocudos lived in the interior portion of the state of Minas Gerais, so very far from the Pacific Ocean.

Lisa Matisoo-Smith  said it best, that to call that haplogroup Polynesian is a bit of a misnomer, particularly because we know it also exists in the Philippines and the subgroup – B4a1a1b (Malagasy motif) is in Madagascar.  Until a full sequencing test is done, there still may be some debate as to whether or not Polynesians have gone that far into the interior of South America, or that these skulls were the descendants of Malagasy brought over during the slave trade.