In-common-with, shared matches, and clusterings

There are a few tools out there that either these DNA testing companies will provide to help distinguish our matches from each other.  They are known as in-common-with (icw) or shared matches.  The idea is that a group of DNA matches on your match list who match each other indicates a common ancestor.  

Figuring out a paternal DNA match from a maternal match may or may not be as challenging for some, depending on how well of a tree you have.  It might be difficult to know if a DNA match is on your paternal grandfather vs. paternal grandmother’s side, or from a maternal grandfather vs. a maternal grandmother’s side.  Or even going back further, figuring out that a DNA match is on your maternal grandmother’s father’s or mother’s side, or that grandparent’s maternal grandfather vs. their maternal grandmother’s side.  That would also depend on how well your tree is built out, and the same would apply for your DNA matches.

This is where the shared matches or in-common-with features could help.  For Polynesians, because we match each other to some extent due to endogamy (just as other endogamous populations will experience this), it can be confusing, misleading and really not useful.


Visually, there are a few tools to help make it easier for you to distinguish.  Clustering (auto-clustering) is another tool, something that MyHeritage offers or you could use a third-party site such as to visually show you groups of matches.

Here I show a few of my 1st cousins who have DNA tested, both on my father’s and mother’s side.

My paternal 1st cousins are represented in the green.  My maternal 1st cousins are in red.  Then there are my 2nd cousins on my maternal grandfather’s side represented by the orange.  Going further back on my grandfather’s side, specifically to his mother’s side I have two 2nd cousins once removed who have tested, they’re in blue.  Then on my grandfather’s paternal side, other distant cousins, they are in lavender.

A closer look at this shows how on my father’s side (green) my 1st cousins will match each other, defined by a line.  Since we are all 1st cousins to each other, cousin 1 will match cousins 2, 3, 4, 5, 6 & 7, plus me of course as these are my DNA matches.  Cousin 2 will match 1 (as already mentioned) plus 3, 4, 5, 6 & 7.  The same for 3, 4, and so forth.  

For my mother’s side, I started off with the color red, my grandparents’ grandchildren. We all match each other.  Then going to my 2nd cousins (orange), they come from two different sisters of my grandfather Joseph.  So they all match each other, plus match me and my 1st cousins.  Then going back further on Joseph’s mother’s side (blue), they match each other plus my 2nd cousins plus my 1st cousins as we are descended from my grandfather’s mother Elena’s ancestors. Then finally my grandfather Joseph’s father’s side (lavender).  So while those cousins will match my 2nd cousins and my 1st cousins, they will not match my grandfather Joseph’s mother’s side.  That is the basic concept of how this will visually work.

With endogamy, or with Polynesian matches, that same cluster would basically have all the dots connecting each other.  So imagine my grandfather’s father’s side (lavender) matching my grandfather’s mother’s side (blue).   See the grey lines connecting the two sides.


Example of every dot connecting to each other – what you would expect to see with endogamous matches.

In reality, that is what we will see because of how we all match each other.


I finally took the time to try to use a network analysis software called Gephi to demonstrate what this interconnected group of DNA matches could look like.  Previously I used a website’s tools.  That website is, and used their Triangulation tool that produced nearly identical results as Gephi.  But for now, just demonstrating what Gephi has to offer.

This diagram consists of 196 nodes (dots) and 9,494 edges (lines).  To get that, I had to import a csv (spreadsheet) file, the icw file which has 9,494 lines of names into Gephi.

As I said earlier, while these clustering tools do not work due to the fact that we connect to each other and usually at a very high amount of shared DNA, I was able to extract some information from it.  I probably could have extracted and gathered all of this data manually but taking it directly from a spreadsheet is not as easy as it is just data that are organized by columns, rows, and/or categories.  This is why these tools are available in order to provide a more visual way of interpreting your matches.

What I did gather from this and thought was interesting was that the longest segment size showed 12cM for 24% of my matches.  I noticed this years ago that the size of the longest segment, largest segment, or longest block (depending on the DNA testing company) for many of these predicted 2nd – 3rd cousins would be between 12cM – 14cM.  Rarely would it go over 20cM.  In my previous blog entries, I mentioned the importance of the longest segment size in determining a true 2nd – 3rd cousin.

Looking at that same data, we see that only a single DNA match has the longest segment size of 64cM.  That DNA match is actually my 2C2R (2nd cousin twice removed). 

This next image is the same data except now it’s showing the number of shared segments.  Prior to  Ancestry providing us the longest segment size, we only had to go by the amount of total shared DNA and the number of segments.  So the top (28% of my matches) shows 28 segments.  They seem to range between 25 – 29 for the most part.

An important thing to notice about this particular data, unlike other people who could actually produce nice clusters, is that when I ran this icw file that took about 4hrs to do, I had to limit the amount of shared cM (centimorgans).  This particular diagram in which the icw file I finished running last night range from 185cM – 199cM.  Yet I had 98 matches that fell into that range.

Prior to this particular icw file, I ran one back in May 2022 where I went as low as 90cM.  So it is 90cM – 190cM.  This was the result of that older icw file.

Looking at the data, 13 segments seems to be at the top making up about 14% of these matches.  That particular file had 1,215 matches, which the icw file produced 2,049 nodes and 1,046,502 edges.  That is a lot of dots and lines.

A few people had suggested using Gephi as I could tweak the data. I have been tweaking it for about a week, and as I knew I would not be able to get anything unique from it.  

The problem with this, something that any endogamous group would encounter is running the icw file.  Imagine having only 10 DNA matches.  But for an endogamous person where you could match nearly all the other people even if you are not really closely related at all, that could be easily multiplied.  So match #1 would match all of the other 9 matches on that list.  Match #2 would have about the same matching all 9 other matches on that list.  And the same for match #3, match #4, etc.  So that icw file gets larger and larger.  Now complicate that issue as the less amount of DNA you share, you probably match more people or have a longer list of icw people to add.  This is why I initially ran it again since last May but going down only as low as 185cM from 199cM rather than 90cM – 190cM.  As I go lower, the number of matches, the number of nodes and edges will greatly increase.

For non-endogamous populations, expect to see something that would be more clear.  Utilizing Gephi you could easily attach names and whatever data you would like to the nodes and distinguish each cluster from each other easily.


As I mentioned MyHeritage as one of the DNA testing sites that offers auto-clustering with your DNA  matches.  If you have tested at MyHeritage, you could run an auto-cluster as often as you would like.  Unlike where you could adjust the parameters, MyHeritage seems to do it automatically.  So depending on the number of matches that you have, or in my case could have a lot of icw, they (automatically) decide what would be best to produce a decent amount of matches.

First, an example of what you would see with autoclusters:

What are autoclusters

Image from MyHeritage’s FAQ page.

What you would get are colored blocks assigned randomly.  The grey square are DNA matches who happen to match someone in one cluster as well as in another cluster.  This could indicate that you have a DNA match who might not have enough shared DNA to match everyone in a particular cluster, something that you would see in a more distant relative like a 2nd cousin of yours not matching a lot of your common 3rd cousins. 

That is basically how clusters work.  They are to help you figure out how your DNA matches match each other.  Then of course it is up to you to figure out based on their trees how all of you connect.

This autocluster of mine I generated back in June.

I actually now have two clusters.  MyHeritage puts a limit as how the maximum amount of shared DNA to be used in autoclusters.  400cM, since that is about the level what you would share with 2nd cousins, not with 1st cousins, maybe a few 1C1R (1st cousins once removed).  My second cluster which reflects my paternal (Filipino) side actually does consist of two 1C1R, a 1/2 1C and a 2C (2nd cousin).  One of those 1C1R in my second cluster is also Kanaka Maoli like myself, so that cousin did produce a few grey squares with some of my other DNA matches in that larger cluster.

What I also did was extract the data which I put on the right-hand side.  I sorted it by the least amount of shared DNA and identified the person if I knew their ancestry. You can also see the size of the largest segment and the number of segments.

A reminder that with MyHeritage’s autoclusters they implement a maximum threshold of 400cM.  The minimum threshold will vary depending on the person’s DNA matches, how much they share with you as well as how much they share with each other.

In my case, there were 494 matches taken from my list who share less than 400cM with me but more than 95cM (actually 108.1cM was the lowest amount shared).   They also decided that in order to be considered a shared DNA match, my matches need to match at least 95cM with each other.


While these tools are great for separating your DNA matches and possibly help you figure out how each one is connected to you and to each other, Polynesians will not benefit from these at all.  They actually could be misleading if they one does not understand what they are looking at, which is a lot of closely predicted 2nd, 3rd and 4th cousin matches.

AncestryDNA’s Ethnicity Update, Ethnicity Inheritance, and Chromosome Painter

Ancestry updated their ethnicities again, although they made some adjustments earlier this year. They also released their Ethnicity inheritance back in May. You can read more about it here: SideView™ Technology.

They also have a Beta version of a Chromosome PainterBeta where they paint the chromosomes with the regions they’re associated with in your ethnicity estimate.


Ethnicity Inheritance

The Ethnicity inheritance estimates which regions you inherited from each parent.  Once you know which side belongs to which parent, you can edit it, identify your paternal and maternal sides.



Currently, the Chromosome Painter is in Beta and not everyone have this feature yet.  It attempts to assign each ethnicity to a specific part of your chromosome.

You can click on paternal, maternal, or see them all together.  You can also click on each ethnicity to see where specifically they are located on each chromosome.



The former Eastern Polynesia & New Zealand Maori region is now in two separate categories – Hawaii and New Zealand Maori regions. These new regions are supposed to provide more precise results for people of both Hawaiian or Kanaka Maoli (aboriginal Hawaiian) and Maori heritage.

They state that while people from places near or with deep historical and genetic ties to Hawaii and New Zealand like French Polynesia and the Cook Islands, will most likely see their previous Eastern Polynesia & New Zealand Maori percentage split between the new Hawaii and New Zealand Maori regions. This is similar to when they created the Samoa and Tonga categories and Samoans were getting some small percentages of the Tonga region and Tongans were getting small percentages of the Samoa regions plus anywhere from 0% to 2% of Eastern Polynesia & New Zealand Maori, just as we would get 0% – 2% Samoa or Tonga and that would vary with every update.

They have made a few “updates” which I believe was an increase in the number of their reference samples.  

Currently, their reference panel has 68,714 DNA samples that divide the world into 84 overlapping regions and groups.  For the Polynesian groups:

Hawaii – 392
New Zealand Maori – 206
Samoa – 91
Tonga – 164

I tried to see if there was some type of pattern as far as how much of the Hawaii region would show up versus the New Zealand Maori region for Hawaiians and Maoris.  There almost seem to be some consistency from what a few Hawaiians and Maoris have been showing me.  

Just comparing my own results, along with my mother’s and one of my cousins.

Focusing on the Polynesian percentages.

When looking at my cousin’s results, since she’s not admixed, I figured maybe it’s about  70% of the correct region versus the other 30% of the other region that we’re not part of.  Other people have shown me their results and it seems like they do fit that range.

When I calculate the percentages that both what my mother and I have, this is what I came up with:


It seems pretty close to that 70% vs. 30%, but not consistently as I do see varying results from other people including some of my other relatives.

At first, I thought this is more prevalent among those who are less than 25% Polynesian since those who were sharing these varied percentages had only a single grandparent or great-grandparent and beyond who was Polynesian.  A closer look at my own relatives I realized it’s still not consistent.

One of them does fall into that range I expected while the other two are similar to each other, more of an 80/20 split.  

And then there are some of my relatives I saw that still have that small percentage of Samoa or Tonga.

While it would be nice to see 100% matching to the appropriate region, that would apply to everyone else who aren’t Polynesian and have mentioned how they do not show the correct amount of German or French or Spanish vs. Portuguese, or like with  my own results where they removed my “England and Northwestern Europe” and replaced some of it with “Wales” and some of it went to my “Norway” region.

I have been keeping track of all of the updates I’ve been getting since I tested with Ancestry back in 2014.

So as they attempt to get specific with our region when back in 2018 they (the science team) told me to my face that they cannot split the former Polynesia region, it becomes less accurate and seems to cause more confusion.

And while their communities are still there (they are below the regions and other features near the bottom of your results), I continue to witness many who still believe that they do have ties to that other region, whatever is not known in their genealogy.  Like a Hawaiian insisting that they have Maori heritage or a Maori having Hawaiian heritage when the paper trail does not support it and/or they are known to just not have that heritage at all.

What confuses people more about the ethnicities is the fact that we can be a very close match to other Polynesians, particularly those of the same region.  So a New Zealand Maori and a Hawaiian for example can be predicted as first or second cousins.

Here I compare that same cousin that I mentioned who isn’t admixed, showing her top/highest/closest endogamous matches.  I identify who is NZ Maori vs. Hawaiian (Kanaka Maoli).  Then I added in my own top matches who are my known closest cousins. 

There is an easy way to distinguish a true 1st, 2nd or maybe 3rd cousin match from an endogamous match.  The longest segment for example is essential in determining a true 1st, 2nd or 3rd cousin match.  Also with endogamous matches are the high amount of segments, something that you will not see with your true 1st, 2nd or 3rd cousins.

In a future blog post, I will blog more about these anomalies that exist for Polynesian matches, and the difference between an eastern Polynesian versus western Polynesian match.

But for now, hoping that with more updates the results become more precise and cause less confusion.

Making a connection: Utilizing the Longest Segment size

On December 29, 2021 while going through my new matches at AncestryDNA, I decided to go through my closest matches to be sure I didn’t miss anyone. Usually, these closer matches are endogamous, mostly New Zealand Maoris.

While going through my list of top matches, I noticed a match that I haven’t viewed and had a Japanese surname, which to me would indicate that the match has ties to Hawai’i. And I was right, but more surprisingly, he shared a fairly large segment with me – 41cM. The person had no tree, so I immediately contacted him identifying my maternal grandparents and their parents. Right after that I began to search everything I could and managed to only find the names of his parents, as all three of these people (including the match) were star athletes, so their names came up often in the newspaper. I couldn’t find anything else other than their accomplishments and winnings.

The usual process that I do to figure out how a DNA match is connected is to compare with other relatives and to see which one of these relatives shares a large segment, at least 30cM. This would indicate a non-endogamous match, or rather it is more likely to be a true 2nd – 3rd cousin match. Since I have access to these relatives’ accounts, I can see how large of a segment they share. Using the “Shared Matches” feature is not useful when dealing with Polynesian matches as we tend to match everyone.

The cousins whose account I have access to are in bold. (These are not their real names)

So I go through my list of matches, and usually I can figure it out with the longest segment size to which branch the match belongs. But that may not be as effective once you get into the 3rd cousin range. In fact, while Jan, Steve, Lani and Lei are all my 2nd cousins, Jan and I share a longest segment size of 24cM while the others exceed 30cM. This is why I have been pushing the 30cM longest segment size, although sometimes, as the exception with me and Jan, it may not be as large. But with Jan compared to Lani and Lei (her 2nd cousins) and with her brother Steve compared to Lani and Lei, and when I compare myself to Lani and Lei, we do all share a longest segment size that is more than 30cM.

But this is what it looked like for all of us when I compared the longest segment size.

So while Steve had the next highest (after me & my mother) longest segment size, it wasn’t enough to convince me that the match was on my grandfather’s side. And while I usually ignore the total shared amount of DNA when trying to narrow down to which branch (my grandfather’s paternal vs. maternal side or my grandmother’s paternal vs. maternal side) that match belongs, you can see that compared to my 2nd cousins Lani, Lei, Jan and Steve, only Lani shares less total shared DNA with this new DNA match than I do. But my other 2nd cousins including my 1/2 1st cousin Angies shares more DNA than I do.

Days later I looked into the match again. And not with my other DNA matches as I’ve exhausted all avenues on the DNA aspect and matching, but rather searching for my match’s ancestors.

Again, since the match and his parents were athletes, I kept finding mostly articles about their sports activity, accomplishments and winnings. I also found sports photos of them in yearbooks (on Ancestry), and looked through social media, trying to compare features of the match’s parents, although you really can’t compare with Polynesians. A lot of Polynesians, even admixed Polynesians look like some aunt, uncle or cousin of mine. But then it dawned on me, what are the chances of the match actually being related to me via his mother? Her full name was mentioned in the paper, yet I was focusing on his father and actually stopped searching because I could not find more information on his father. I even looked in my (genealogy) database of all the family members that I have, looking for this match’s surname just in case I had it. But I did not. So now I thought I should really focus on the mother.

I managed to find in the 1972 Directory of City & County of Honolulu the match’s mother living at an address that was the same as what I believed were her parents. And from dates in the yearbook photos of the mother and maternal grandfather, the mother was not much younger than me. That made me realize that it is more likely that the connection is a few generations back.

I searched the newspapers with the match’s maternal grandfather’s name and found a 1952 obituary that mentioned the grandfather as a brother to the deceased, who was a 9 year old boy. The obituary mentioned the parents of the deceased as Mr. and Mrs. H. Markham and several siblings. A couple of the siblings with that same surname (Markham) and a few others carrying the same surname as the DNA match’s grandfather.

I immediately thought that maybe the connection is through Mrs. Markham who was previously married to the maternal grandfather’s father. Near the end of the obituary, it mentioned the grandfather of the deceased – John KAHEAKU. I knew exactly who that was, as he was married to Violet HOLBRON, the sister to my great-grandmother Rose HOLBRON. Incidently, when I searched my database for that couple, I did have their daughter Violet KAHEAKU listed and as having two spouses. With the first spouse, Violet had a 9 year old boy who died in 1952, and that she also married Harry MARKHAM.

So the DNA match turned out to be my 3rd cousin once removed.

While utilizing the longest segment is good practice, once you get beyond the 2nd cousin level, the segment size may not be as large, as in the case of my cousin Angie who is a 3C1R to the DNA match. Sometimes you can also tell by the high number of segments. In my example, I do share less amount of segments but so does my cousin Lani who really isn’t (recently) connected to this new DNA match, or my new found cousin.

It’s still a good rule to go by when you have a lot of 2nd to 3rd cousins, or as in my mother’s case a lot of 1st to 2nd cousins.

Ancestry is finally showing Longest Segment size

I have been waiting and have asked Ancestry for this a few years ago.  Apparently, I was not the only person of an endogamous background who had asked for it.

I went through my list looking for the first known Maori, just to see how large the longest segment would be.  I have always advised Polynesians to look for anything at least 30cM for the largest segment (longest block at FTDNA) or as Ancestry is calling it, longest segment size in order to determine a true 2nd to 3rd cousin relationship.  I know with other endogamous groups they tend to look for something around 20cM.

At Ancestry, you will have to click on that match’s name in order to see the longest segment size.

Notice how the longest segment size is below 20cM, but based on the total amount shared the predicted relationship is anywhere between a 2nd – 3rd Cousin.  To show you what that looks like against known 2nd to 3rd cousin relationships, I am showing my match list about where the endogamous matches come in.  I indicate the Hawaiian ones versus the Maori ones and my known cousins.  I am inserting the longest segment size since you cannot initially see it on your list until you click on the match.

While I have a lot of 3rd cousin matches, my mother and one of my cousins have a lot of 2nd cousin matches.  My cousin had over 500 of 1st – 2nd Cousin predicted relationships.   Just looking at her top matches, I indicated the known relationships versus any Maoris and Hawaiian that she matches.

This definitely will help with determining the endogamous matches.  But the longest segment size does get smaller the more distant of the relationship becomes.  So by the 3rd to 4th cousin level, you may not really be able to tell, with the exception of the fact that we tend to get a lot more segments.

I have a 2nd cousin of whom we do not share a lot of DNA.  While we still share in the range of what is expected for a second cousin, the longest segment size is just over 20cM.


At least sorting through these matches have become easier now that we have this additional feature.  Again, this works well with the closer predicted relationships.  This may not be as useful if you already have a lot of distant matches and your Polynesian matches fall within that range.  A lot of my western Polynesian (Samoans and Tongans for example) matches are in that range.

Below are some of my Samoan matches and while their total shared is not a whole lot, their longest segment size is significantly smaller compared to what we normally see with eastern Polynesians.  This is true with other DNA companies like FTDNA and 23andme.

My top FTDNA matches where the endogamous matches come in among my known relationships.

I am hoping that in the near future Ancestry will put the longest segment size immediately on the match list page so it will be easier to go through rather than click on each name to see if the match really is worth looking into.    For now, what we have is definitely an asset to help us sort through these matches.

More Genetic Communities at AncestryDNA

Finally, after asking AncestryDNA to split their Genetic Communities at least into 2 main regions (eastern Polynesia vs. western Polynesia, they come up with a major update, not just for Polynesians but for other places in the Pacific Islands, Asia, and America.

The former “Hawaii, Tonga & Samoa” genetic community has been broken into 4 different communities.

The maps that go with these genetic communities are not the best given how small these islands and atolls are on the map.  Not to mention how distant one island nation is to the next, especially when you see how AncestryDNA decides to group them together.

The Polynesian Islands genetic community is basically the same map that they had for the former Hawaii, Tonga & Samoa genetic community.

The Cook Island & French Polynesia genetic community covers a vast area.  But the area covered is nothing like comparing the distance between New Zealand & Hawaii.

The Hawaii & New Zealand genetic community basically just highlights the remaining extreme points of the Polynesian triangle (minus Easter Island), with Hawaiʻi to the north and New Zealand to the southwest.

The broader Hawaii, Tonga, Samoa, Fiji & New Zealand genetic community’s map does not even zoom in.  You will have to zoom in to see a better view of the islands within this genetic community.

And finally, the Tonga, Samoa & Fiji genetic community would also include other western Polynesian islands like Niue, Tokelau, and Tuvalu.  What is interesting, although it is no surprise, that they also included Fiji into this group.  Historically Fiji had some role with initial populating of Remote Oceania.  I have seen a few Fijian matches not just for me but also with my mother and cousins.

It would be nice if in the future they really can fine-tune these genetic communities a bit more.  While we know that eastern Polynesian people come from western Polynesia centuries ago, those of us from Hawaiʻi, Aotearoa (New Zealand) and Rapa Nui (Easter Island) know that we had ancestors coming from what is known as French Polynesia (Tahitian archipelago and the Marquesas) as recent as 800 years ago.

So while I did not get the French Polynesia (with Cook Islands) community, my mother did.  She does have more matches with western Polynesians (Samoans and Tongans) than I do.  She also has more matches with Fijians than I do, so I am not surprised she got the Tonga, Samoa & Fiji and also the Hawaii, Tonga, Samoa, Fiji & New Zealand genetic communities.

We will see as time goes by how my own genetic communities get updated.

Separating maternal matches from paternal matches

A problem that endogamy presents is when you have a match who matches you on both your paternal and maternal sides of the tree.  If you do not know how you are related, figuring out the connection is challenging.

Working out how matches for my mother are connected can be difficult.  Both of her parents were Kanaka Maoli.  So unless they have trees or I have the motivation to trace a match’s ancestors beyond what they already have, I usually would ignore the match. It takes a lot of work to distinguish if the match is related on my mother’s paternal or maternal side.

While it is only my mother who comes from an endogamous background, my father, on the other hand, was Filipino and I get very distant matches on that side.  And like my endogamous side, I pay no attention unless the match has a tree where I could figure out our connection.

Being from Hawai’i, I do encounter a lot of matches who are like me where they are part Filipino and part Kanaka Maoli.  I have seen a few matches whose trees indicated ties to the same island as my Filipino grandmother.  For their Hawaiian branches, they may or may not show the same geographic area where my Kanaka ancestors lived.  For the most part, we do tend to match on a DNA level because of the endogamous side as I mentioned earlier, the matches on my Filipino side are usually distant.

Here I demonstrate showing my closest cousins on my Filipino side, and how they can easily match up relatives on my Kanaka side.  Basically, my mother matches a few of my cousins on my father’s side.  It is because my Filipino cousins are also part Kanaka Maoli, and they are connecting to my mother via that side.  Of course, something like DNAPainter or Kitty Cooper’s Segment Mapper could be used to show which segments are from my father versus my mother.  But the point here is to just compare how my paternal cousins also match my maternal cousins.

Paternal cousins indicated in RED and maternal cousins in BLUE.


I indicate the relationship (for the ones without names) how they are related to me, e.g.  1st cousin (1C), 1st cousin twice removed (1C2R).

For my maternal cousins in blue, I list how much they share with my paternal cousins.  But for my mother and myself, I show how much we share with both my paternal and maternal cousins.  In some cases, my cousins on my mother’s side have other endogamous (Kanaka) lines so they might share more DNA than expected compared to another closer relative of theirs, or even to my mother.  For an example, take a closer look at cousin #6 and to their parent cousin #5.  Another example is cousin #3 and #4 compared to my mother.

In the example above I only used my close paternal cousins, and know how we connect.  But when dealing with distant matches and no trees, it will be difficult to differentiate paternal versus maternal matches.

This does not include recent pedigree collapse where I do have on my Filipino side cousins who share the same common ancestors more than once, or where I have cousins who are related to each other in more than one way.  This can also affect the amount of DNA shared.

Ancestry updates their ethnicity yet again

As of November 13, 2019, everyone’s AncestryDNA results were updated.  Back in late October, only a few people have been getting the new update and all new testees.  Now we are all on the same page.

They did several changes which include increasing the number of genetic communities for various populations, increasing the size of their reference samples, renaming of categories and adding in a few new categories such as Guam, Samoa and Tonga.

We are going to concentrate on Samoa and Tonga, which they attempted to split off from the rest of Polynesia.

When AncestryDNA created the Polynesia category back in December 2013, it only consisted of 18 Polynesian samples which included at least one (or possibly more) of the samples that have distant European ancestry.  They updated their category and rolled out the new update to everyone back on September 12, 2018 with an additional 40 more samples increasing to a total of 58 for Polynesia.

In June and December 2018, I had the opportunity to speak to David Turissini, Ph.D who is a population geneticist at AncestryDNA.  I expressed my concerns with him regarding more specific categories among Polynesians.  Basically splitting eastern from western Polynesia.  I also explained why I thought that would be much better for us particularly for matching as we all tend to match each other at a very closely predicted relationship.  And that I thought the low number of reference samples could possibly affect the way we get our results.

He told me that I already understood how Polynesians lack genetic diversity so increasing the number of samples would not make any difference.  But then I pointed out how it was not that difficult for me to distinguish a western Polynesian (Samoan, Tongan, Tokelau, Tuvalu) versus an eastern Polynesian (Maori, Tahitian, Cook Island Maori, Hawaiian, Marquesan, Rapa Nui).

Despite all that was said, I was surprised to see how they increased the number of reference samples for Polynesia along with adding in Samoa and Tonga.

New categories & increase of samples for Polynesia

You can read more about it here:

So their reference samples of 16,638 has increased by 23,379 samples to a total of 40,017.  Of that amount, they added 130 more samples to the Polynesia category and creating Samoa with 73 and Tonga with 97 samples.

While I have not noticed a lot of Tongan results yet, I have seen several Samoans.  Most of the ethnicity results I have seen are either Hawaiians or Maoris.  For the most part, eastern Polynesians are getting either Samoa and/or Tonga in the range of 1% – 4%.  For Samoans, I’ve seen about 60% – 70% Samoa and the rest Tonga.  A few Cook Island Maoris seem to have a higher percentage of Samoa compared to other eastern Polynesians but that may be due to the fact that they have ties to Aitutaki or its neighboring islands versus Rarotonga.  Or maybe Cook Island Maoris just have a higher percentage because of another group of people that settled earlier and/or it could be due to the original people who just so happened were genetically more like Samoans.

This whole classification, while it cannot be accurate as it is nothing but an estimate, really makes it interesting and gives us a bit more of an insight as to the settling of Polynesia.  Of course we can also see this as more people are getting Y-DNA tested and mtDNA and we slowly learn more about these different migration patterns which no surprise, confirms our oral histories.

My results have changed throughout time since I tested with AncestryDNA back in January 2014.  The biggest breakthrough came last year as they actually created the Philippines category which correctly allocated my Filipino side from Polynesia, therefore decreasing my amount.

But what does my tree look like compared to my current DNA results?


With the latest update it made my color scheme more difficult to accomplish but in the tree I do point out the foreigners.  While my father was born in Lahaina, Maui, Hawai’i, both of his parents were from the Visayas region in the Philippines.  For my maternal grandmother’s mother – Rose Holbron, her paternal grandfather was from Hull, England while her maternal grandfather was from Queens, New York, U.S.A.  And for my maternal grandmother’s father – Frank Kanae, he had distant American ties.  His great-grandfather Isaac Lewis Kanae was the son of Captain Isaiah Lewis.  I still have not pinpointed his origin yet.  And Isaiah Lewis’ father-in-law Oliver Holmes arrived in the Hawaiian Islands in 1793 from Plymouth, Massachusetts.  At the time Oliver Holmes left Plymouth, there were only 15 states in the U.S.A.

So what I did was place their ethnicities under a continental level and compared it to my DNA results, which all adds fairly nicely, taking in random inheritance.  My mother gets 17% European compared to her sister who gets exactly 15% which is consistent with the genealogy.  And in turn my mother gave not one but both of my brothers about half of her European – 8% and 9% for them while I ended up with the higher percentage – 11% which appears as about 11% – 12% at different testing companies.

And while I show 2% Samoa, my mother ended up with 1% of both Samoa and Tonga.


For my cousin who is not admixed, it was interesting to see, despite the erroneous genetic communities that would come up, how hers changed.  Because we match other Polynesians at a very closely predicted relationship, and the fact that my cousin is not admixed, she matches a lot of part Polynesian people who fall into a specific genetic community among others of whom she also matches.  So she ends up with the same genetic community.



With this latest update, they finally got rid of the Native American category for both my cousin and my mother.  But now with Samoa and Tonga, it is no surprise that they would give us a small percentage of that.  And having gone through several of these 1% – 2% categories of Samoa and Tonga, they all seem to range the same – 1% – 4%.  Interestingly for my mother, her range for Tonga was 1% – 3% while her Samoa was 1% – 4%.  But the way it ended up was both 1%.

I have also been witnessing those who previously had small amounts of Polynesia now being reclassified as Samoa, Tonga or Guam.  Usually, these are people with either Melanesia or some other Southeast Asian from various parts of Indonesia.  I would be really interested in seeing more results who have ties to that area.

So while I was told the number of increase of samples would not do anything, it obviously did quite a bit.  If only they would have renamed the Polynesia category by specifying Eastern Polynesia.  They should also do the same renaming their genetic community.  It would make more sense as we know that both Samoa and Tonga is part of Polynesia and of course, their map for Polynesia would include Samoa and Tonga within that area.  I would have expected western Polynesia as I mentioned to them versus eastern Polynesia, but they really got very specific.  And in the end result, Samoans will see that they are about 30% Tongan and probably the same for Tongans where they will see a smaller percentage of Samoa.  These people do get about 0% – 1% Polynesia in their results.

We will just have to wait to see what the future updates would bring.

Previous entries about AncestryDNA’s Polynesia category:

Largest Segment – Is it the best way to gauge the closeness of relationship?

In my earlier blog posts I have mentioned how significant the largest segment size is when determining a true 2nd to 3rd cousin relationship.  Polynesians can have a total shared amount that can easily exceed 100cM.   These totals tend to over-estimate the predicted relationships.

From the ISOGG Wiki’s page, you can see that the average for 2nd cousins once removed (2C1R) is 106cM while 2nd cousins are averaging around 212.50cM.

So we tend to get a lot of these 2nd – 3rd cousin matches, depending on the company you tested with.  This is why the largest segment size has become important.  Blaine Bettinger has a post entitled The Shared cM Project – Longest Shared Segment where people had submitted their longest segment size based on their known relationships.  You can compare 2nd and 3rd cousins there and see what the average is for the longest segment size for specific relationships.

A quick look at the type of numbers just by looking at my own ONE TO MANY from

My cousin Allen who is a 2C1R to me (his maternal grandmother & my mother are 1st cousins) has a large segment of 35.9cM.  You can see more comparisons of the largest segment for 2nd to 3rd cousins from Blaine’s Shared cM Project but I also have been keeping my own numbers from my known relatives.

Only one of those 2nd cousins shared a large segment of 21.8cM, pretty small, and then it gets even lower as you go more distant.  But normally 2nd cousins will share a rather large segment, which is why more than 20cM has always been advocated and also among the Ashkenazi Jewish community.  In fact, I thought they used 25cM, but I could be wrong.  I even mentioned 30cM would be good.

But is it a requirement?  Absolutely not.  However, if you cannot find a connection, or the same geographical origin i.e. New Zealand or Hawaii, then that would be a strong indicator that you are not as closely related as it was predicted.

I have been noticing how I do have a few Hawaiians whose largest segment is more than 30cM but have not been able to find a connection.  I also notice that these matches will not have the same geographical origins as I do.  So could it be that these large segments remain in our population for many generations?

Here’s an example of how it actually has remained for centuries by comparing my Hawaiian mother and a Maori.

Taking my mother’s ONE TO MANY matches, I sorted them by the largest segment size.  I indicated the known relatives in blue and the unknown in red.  My mother has a Hawaiian match as 44.6cM for the largest segment.  I still have not been able to find a connection, although one of that match’s branch goes back to the area of a few of my ancestors.  But even for us, that was more than 3 generations ago from my mother.  Another at 39.9cM, not sure if that person is a Hawaiian or Maori.  And there is a Maori match with the largest segment of 25.9cM.   At FTDNA, there is a Maori match whose largest segment is 23cM.

Here is the largest segment sized match with a couple of Hawaiians from MyHeritage.

37.2cM and 33.6cM.  They have pretty good trees but their ancestry goes back to totally different islands from my own ancestors.  And I saw in their trees the origins of the different islands is further back while the more recent ones were born in Honolulu where some of my more recent ancestors were born.  I did trace many of my ancestors’ descendants who remained in Honolulu but none are those connect to these matches.

Here is a Maori match from MyHeritage.

Notice that the largest segment is 34.2cM.  The highest I’ve seen with a Maori.  How can a large segment last that long after many centuries?

And while the focus here is utilizing the largest segment to get a more accurately find a true 2nd to 3rd cousin match, we know how in one generation a large segment can quickly be reduced.

Comparing with the largest segment that my mother shares with her 1/2 3C.  This is how they connect.  I outlined in yellow all testees in this particular comparison.

The largest segment that my mother & her 1/2 3C share is 49.6cM (FTDNA indicated 52cM) according to GEDmatch.  But that particular segment was not inherited entirely by my mother’s sister and seemed to have been broken up thanks to recombination and turned into a 10.7cM and a 25.1cM segment.

My mother’s deceased brother seemed to have received that same segment or maybe even slightly larger.  And while he is not alive to test, his son did, and he shares 50.2cM with this 1/2 3C of our parents, or our 1/2 3C1R.

This is what the comparisons look like.

My younger brother got nearly the entire segment as my mother got it but I got a very small portion of it, just 14.3cM.  That’s a huge difference from 49cM.  Had my mother nor my younger brother got tested, I would not have been able to find this good match and would have concentrated on matches with large segments more than 20cM or even 30cM.  My older brother got DNA tested however he does not share any of this same matching segment.  In fact, he shares 0cM on this particular chromosome.

This 1/2 3C was key in finding my mother’s biological parents.  At the time I did not know how we were related but I did concentrate on this match because of the large segment size.

So how do we really filter all of these matches?  By solely concentrating on the largest segment?  You should definitely not spend too much time on large segments that are less than 20cM and whose shared total is way over 200cM.  With those particular matches, if you compare trees and notice no common geographic area, that would be a big indicator that it is a distant match.

Remember that with a 2nd cousin you would share a pair of great-grandparents.  With a 3rd cousin you would share a pair of 2x great-grandparents.  By that generation or even a generation further back or two if you find that you do not share the same geographic location, then the match is a distant match.  The same applies for large segments greater than 30cM.  If no common geographic location, then it is probably a distant match.

myOrigins 2.0 update – FTDNA

Back in April, FamilyTreeDNA (FTDNA) finally updated their myOrigins.  This was initially set to roll out shortly after November 2015’s 11th Annual International Conference on Genetic Genealogy held in Houston, Texas.

FTDNA started off with Population Finder, which was replaced by myOrigins in May of 2014.  With Population Finder, they had an Oceania (Papuan, Melanesian) category.  When they switched to myOrigins, they removed the Oceania category.  Since Polynesians are about 75% Southeast Asian and 25% Melanesian (Oceania), Polynesians would show up as just Southeast Asian.

They increased their population clusters so now they have a total of 24.  I believe prior to this newer version there were about 18 of them.  While a lot of people have reported how “off” these results are, focusing on just the Polynesian genome, I notice that there is a consistency to have about 3% – 9% Northeast Asian along with the predominantly nearly 75% Southeast Asian.

Population Finder, myOrigins 1.0 and myOrigins 2.0

These are the different versions.  FTDNA seems to be ever increasing the amount of European that I have for whatever reason.  I usually range between 8% – 12% at various DNA companies.

Below is a breakdown of what other Polynesians have been getting with the new version of myOrigins.


Click for full image

Percentage breakdown by the various East Asian and Oceanian categories.

For now it seems that the new version of myOrigins are giving a lot of people many trace regions.  While I did not include them in the image above, I have been seeing this for eastern Polynesians so far.  Maybe in the future there will be an update that could refine these trace regions so that it appears less for everyone.

MyHeritage Ethnicities

As of May 30, 2017, MyHeritage finally released their Ethnicity Estimate (beta) to those who uploaded their raw data.  So far this service is still free.  Not sure if they will discontinue that service.  Currently their tests are at a reduced price of $79.


Not only does MyHeritage (MH) have an Oceanian category but they included Polynesian along with Melanesian and Papuan.


Last year and probably the year before that, they reached out to people who had a tree at MH whose 4 grandparents were listed in a given geographic area confirming ties to that particular place or country.  And while they seem to have obtained more than Ancestry’s 18 Polynesian samples, they did not take into consideration that these people may be admixed.

A lot of admixed Polynesians who did test with MH are reporting to have lost a lot of their European while simultaneously having an increased percentage of Polynesian.  There seems to be about 10% difference.

Here are my mother, my maternal aunt and my own results.

Click for larger image

My mother and her sister are 85% Hawaiian while 15% is of European background.  My mother gets about 17% European at the varying DNA testing companies.

Several Polynesians have shared their Ancestry results with me.  Comparing it to MH it seems that the numerous samples that they used for the Polynesian category included some admixed Polynesians of European heritage.  I have been hearing the same situation for those with admixed Native American background reporting 20% to 30% more Native American while reducing the amount of European.

What is interesting about MH is that they did have other populations not covered by the other testing companies.  They separated the Melanesian and Papuan, commonly grouped together and labeled as “Oceanian” by other companies or at GEDmatch, and provided a separate Polynesian category.  They did something similar for the Asia group.

MH has specific groups within the Southeast Asia area, such as Filipino, Cambodian, Vietnamese, Thai, Malaysian and Indonesian.  While the thinking is that if you come from that particular background which they tested, you should score perfectly with that group.  This may not apply for some either due to the limited number of samples and/or where they got their samples from, such as taking samples from one specific area.  I have only seen a few Filipinos’ results where they score 100% Filipino/Indonesian/Malaysian.  A couple of Chinese people received majority Chinese and Vietnamese and a smaller percentage of Filipino/Indonesian/Malaysian.

My guess is that this breakdown of the various Southeast Asian groups helps separate Polynesians (and Micronesians) who also have some Southeast Asian background.  At Ancestry, Chinese people were reporting about 10% Polynesia, Vietnamese as high as 15% and Filipinos around 32%.  Ancestry has no Southeast Asian category, so those of Southeast Asian background will get some of the East Asian, or what Ancestry has as “Asia East” along with a small percentage of Polynesia.

Aside from MH engulfing the European for admixed Polynesians, it seems fairly accurate at least for me being that I am half Filipino and 43% Hawaiian and about 12% European background.  I am going to assume that the West Asian below is part of my European background while the South Asian is part of my Filipino backgroundc

New 5th Cousin connection helps map out chromosome!


Now that I had figured out who my mother’s biological parents were it has become easier to find connections.  (You can read about it here:

While there is one branch where I find a lot of relatives on my great-grandmother Rose Holbron’s side, I am slowly finding distant connections on my great-grandfather Frank Kanae’s side.  Frank Kanae was Rose Holbron’s husband.

Earlier this week I received an email from a woman named Raychelle who saw me and my numerous kits of family members that I manage on as a match to her.  I began the normal response, almost ready to dismiss her since many of these matches appear to be close when in reality we are usually distant, and for others, much more distant.  And from what I could see, it wasn’t such a huge amount.  At GEDmatch, Raychelle and my mother shares 62.9cM total, with a large segment of 10.7cM.  So at least a 4th cousin level.

After I told her that she could find me on Ancestry (since she uploaded to GEDmatch via Ancestry) and look at my HOLBRON family tree, she found out that we have the LEWIS connection.

She is a 5th cousin to my mother, and a 5th cousin once removed (5C1R) to me.  I come from Isaac Lewis who was known as Isaac Lewis Kanae or Isaac Kanae Lewis, and also known by the Hawaiianized version – Aikake Lui.  While Raychelle comes from John George Lewis, and his Hawaiianized name was Keo Lui.  My assumption is that Keo was short for Keoki (George).  Keo could also be short for Keoni (John) and then there was the catholic version – Ioane for John.

But what was interesting is that she had this genealogy and I had updated mine from this to reflect what a couple of people have been researching.

According to the information that has been circulating at various sites on the internet, Isaac’s father – Captain Isaiah Lewis was the son of Captain Ezra Lewis.  And John G. Lewis was the son of Captain John Lewis, who was Captain Ezra Lewis’ son but through a different wife.  I listed them as spouse #1 and spouse #2 because different sites and people will switch the spouses showing Isaac as the son of one spouse, and another will show Isaac as the son of the other spouse, and vice versa for John G. Lewis.

Click to see larger image
So the question is, were Isaac and John full brothers, or (maternal) half-brothers?  And if they were (maternal) half-brothers, were their fathers paternal half-brothers?

While all of this information going back that far is based solely on people creating these trees without further documentation, for now I am only going by what was documented.  The trees habitually say that Polly was known as Sarah Pauline “Polly” Holmes.  While I can understand that Polly could be a diminutive for Paula and Mary, I’m not so sure that these are the same person, especially since a lot of the information lists this Sarah Pauline “Polly” Holmes having been born in Massachusetts and died there,  and that her husband Captain Isaac Lewis from Massachusetts too.

What we know for a fact according to testimonies from people who lived during the time of Polly Holmes and her father Oliver Holmes.


I am still in the process of confirming and documenting all of these ancestors, so for now I am considering Raychelle and I 5C1R, and that her 3x great-grandfather John George Lewis (Keo Lui) and my 4x great-grandfather Isaac Lewis Kanae (Aikake Lui) were full-brothers.



I compared Raychelle to all of the relatives to see which segments we all had in common.  Any common segments or segments that multiple relatives share would indicate that segment was inherited from a common ancestor.  In this case, Polly Holmes and her husband Isaiah Lewis.

And while autosomal DNA inherited from our common ancestor can remain in our genome for about 5 – 6 generations, there are some cases where it can span several generations and for some as we have seen, in larger segments. These larger segments tend to be passed on within generations entirely intact and having not recombined.

With endogamy, that may confuse things as it isn’t guaranteed that the shared segment came from that same common ancestor.  Especially for Polynesians where we share many small segments.  And these multiple segments may not be in common with other relatives, or rather these segments may not overlap as what I am about to demonstrate.  So when looking to map out these segments, and at the 4x great-grandparent level, if the segments are really small, that may be suspect to being segments randomly inherited.  It may or may not be from the common ancestor, or may come from the same common ancestor multiple times through their different descendants.

I first compared my brother Kaimi and Raychelle and looked for the chromosomes that should match my mom.  Kaimi and I have different fathers, so I decided to use his to compare because his father is also Hawaiian.

I use Kaimi’s unphased and phased data to be sure that if there are extra segments that does not match our mother, then the presumption is that the segment came from Kaimi’s father.  These were the results.


You can easily see how with the phased data the size of the segment is somewhat smaller if it doesn’t remain the same or disappear altogether.

The real work comes in when I compare Raychelle to my mom’s brother’s son Chris, her half-brother’s daughter Lena and her maternal half-sister Aunty Stella.  The detailed specification of their relationship is to help you understand how they are related and know what is to be expected as far as sharing DNA with different relationships go.

What I did first was compare Raychelle to all of those family members mentioned and then see which of those matching segments actually matches up with what my mother matches.  Here’s a diagram of how we are related and descend from Isaiah Lewis and Polly Holmes.


I’ll start first with Chris, the son of my mother’s brother Joseph.


While there were other segments that Raychelle shared with Chris, I am only comparing overlapping segments that are shared with my mom.  There are 3 chromosomes where they share overlapping segments.  Ch 6, 7 and 20.

With Aunty Stella, there were segments on different chromosomes, sometimes on the same chromosome but in different parts of the chromosome that did not overlap.


Only one overlapping segment which is on ch 7.

Then with Lena, the daughter of my mom’s half-brother George.

Lena also shared different segments and different chromosomes with Raychelle that my mom does not have, except for ch 7.

So what is consistent with all of them is that a segment on chromosome 7 is shared with Raychelle.

The diagram above  shows how everyone matches each other, with the last one again showing my mom with Raychelle and that consistent block of segment.

So the fact that we all shared an overlapping segment in common with each other indicates that particular segment was inherited from our common ancestor.  In this case, both Isaiah LEWIS and Polly HOLMES.  But how do we figure out if that segment came from Isaiah vs. Polly?  Remember that there was a discrepancy that Polly’s two husbands – Isaiah LEWIS and John LEWIS were paternal half-brothers according to some other genealogy and that Isaac LEWIS KANAE was Isaiah’s son, while John George LEWIS was John LEWIS’ son.  Both Isaac and John had the same mother – Polly HOLMES.

The best way to distinguish that inherited segment being inherited from Isaiah LEWIS or Polly HOLMES is to test members of each of those families.  That would be distant relatives of whom we cannot find a connection to just yet.  Instead, I used another method.

Since my mother tested at 23andme, they have the ability to show the ancestry broken down by each chromosome. This is what my mother’s 7th chromosome looks like.



23andme identifies portions of the Hawaiian segments of the chromosome as a combination of East Asian & Native American, and Oceanian.  I simplified it by just indicating Hawaiian.  Both of my mother’s parents were Hawaiian, but her mother Rose KANAE also had European ancestry.  Which is why in that diagram one chromosome is labeled as the paternal chromosome, the other as the maternal.

My mother’s maternal grandmother was Rose HOLBRON.  Rose’s paternal grandfather John HALBORN was from Hull, England, and her maternal grandfather William LUDLUM was an American whaler from Jamaica, Queens, New York.  Rose HOLBRON’s grandmothers were Hawaiian (Kanaka).

But it is Rose KANAE’S father – Frank KANAE whose paternal grandmother Mary LEWIS KANAE’s father was Isaac LEWIS KANAE.  Isaac’s father was Captain Isaiah LEWIS.  Isaac’s mother Polly HOLMES was the daughter of Oliver Holmes of Kingston, Plymouth, Massachusetts and Mahi, daughter of the chief Kalanihooulumokuikekai of Ko’olau.  My assumption was that the European portion from Rose KANAE’s father is too far back.  In other words, the European portion of that chromosome that my mother inherited from her mother could have only come from John HALBORN or William LUDLUM, or a combination of both.

There are a few factors that could make a segment remain in tact for several generations:
1) The length of the chromosome.
2) How many cross-over events there were for that particular chromosome.
3) Location on the chromosome (some areas are more SNP dense than others).
4) The possibility of having fewer cross-over events or none at all (we see this happening as well).
This segment seems to match nicely ranging from 7.1cM (my mom) to 9.1cM (Aunty Stella) with all the relatives.

So when I visually compare the section of chromosome 7 that matches up with the shared overlapping segment for all of us, this is where they line up.

If you have read my other posts, you would have read that multiple segments for Polynesians can remain for awhile given that we come from a few common ancestors multiple times.  This paritcular segment had to have come via Polly HOLMES’ mother – Mahi who got it from her parents Kalanihooulumokuikekai and his wife.  And since Raychelle is also a descendant of Polly HOLMES and Isaiah LEWIS, this portion of chromosome 7 did not come from my HOLBRON side.

While my family members used for comparison descend from Isaac LEWIS KANAE’s daughter Mary LEWIS KANAE, there are other descendants through Mary’s sister Papanaha LEWIS KANAE who got DNA tested.  But only one of them was a match to Raychelle.


This cousin shares an overlapping segment of 8cM on chromosome #7.  But when I compared that relative to my mother, they did not share that particular overlapping segment, although all my other close relatives did share that overlapping segment with this cousin.  After looking into it further, I found out that my mother seemed to have inherited a smaller section of that overlapping segment compared to other family members, and her matching criteria just did not qualify as a match according to where all of this analysis was done.  After all, she shares the least out of all the relatives only 7.1cM of this segment and Aunty Stella shares 9.1cM.  And while she gave me and my brother Kaimi this segment, my brother Travis did not inherit this segment.  Which means this portion of chromosome 7 for him was from our grandfather, not our grandmother Rose KANAE.

But that is what is complicated about mapping out segments for Polynesians. These segments could be from any of these lines going back to the same common ancestor multiple times. That means that Raychelle could just so happen match all of us via my maternal grandmother Rose KANAE’s mother’s side, or my great-grandfather Frank KANAE’s mother’s side, or John KANAE’s father’s side, and so forth.  It could also be just by chance, that we share the segment with any other of her Hawaiian ancestors.

Since many Polynesians share multiple small segments and as small as 7cM, as well as having these segments line up very close to each other if not right next to each other, it makes chromosome mapping very difficult to do.  For example, I mentioned one of Papanaha LEWIS KANAE’s descendants share that same overlapping segment on chromosome 7 with the rest of us, while the other descendants  share multiple non-overlapping segments.  I cannot easily assign them to our common ancestor – Isaac LEWIS KANAE, or presume that all of these multiple segments came from our common ancestor.

Since Polly HOLMES is 6 generations away from my mom and all of her descendants share this same overlapping segment, it is safe to presume that this segment came from Polly HOLMES’ mother – Mahi.  And now I can assign at least this small portion to Mahi.


Determining half-relationships with Polynesians – Part II

In my last entry I demonstrated the difficulties of determining the half-relationships after receiving the DNA results of my half-first cousin.   Within an endogamous group, that could be even more difficult as we see larger amounts of DNA shared.

While the ISOGG Wiki Autosomal DNA Statistic page can list the average amount of centimorgans shared,  Blaine Bettinger’s The Shared cM Project  demonstrated that the minimum and maximum amounts shared can vary.  This becomes more evident as the distance of relationship increases.

Within an endogamous group it makes sense that having more than one pair of common ancestors may increase that amount.  The same would apply if you descend from the same common ancestor multiple times.  Both would produce higher amounts shared.

A few months ago I got the results of my aunt believed to be a full-sister of my mother.  My aunt suspected that her father was not her biological father.  And she was right.  But she was not the only one who knew of this, but the rest of the family, particularly the ones of my generations believed that this Aunt’s father was her biological father and did not suspect otherwise.

From my mother’s Family Finder (autosomal) match list at FTDNA:

Screen Shot 2016-05-03 at 5.21.34 PM

The top is my mother’s sister while the one right below it belongs to my half-1st cousin whose father George was mentioned in the last entry – Determining half-relationships with Polynesians.

Initially I was confused by the total amount since I knew it was more than what I shared with two of my half-brothers.  This is how two of my half-brothers compare to me and to each other.

Screen Shot 2016-05-03 at 5.47.08 PM

So my mother and her sister did share a bit on the high-end for half-siblings, but low end for full-siblings.  These are the predicted averages shared for siblings vs. half-siblings.

Screen Shot 2016-05-03 at 5.52.23 PM

The next step was to take a look at the X chromosome.  For half-sisters who had the same father, they would share an entire X chromosome based on how the X is inherited.  To my surprise, it looked like someone took a razor blade and sliced out some pieces of the image.


5+cM setting

5+cM setting




For half-sisters they share a lot compared to what I saw when comparing my half-brothers to each and to me.  Also, I decided to include both the default 5+cM setting and the 1+cM.  With my brothers, we hardly get anything when I lower it to 1+cM.  But with my mother and aunt, you can see a difference although chromosomes 4 and 18 are more likely to be IBS, but given the situation (endogamy, small communities, & isolation) it just may be IBD from a very long time ago.

So the X was not helping me one bit since I thought maybe they were areas on the chromosome that could not be read – no calls.

I immediately uploaded to GEDmatch for further analysis.  No surprise that when I looked at the X, it was the same exact thing.   Knowing that it wouldn’t be helpful, I turned to the other 22 pairs of chromosomes.

Screen Shot 2016-05-03 at 6.52.44 PM

What you would be looking for in full-siblings are full-identical regions (FIR) which are the green sections on the bar graph.  Here is an example of my 1st cousins, a brother and sister.

Screen Shot 2016-05-03 at 7.55.59 PMScreen Shot 2016-05-03 at 7.56.08 PM

About 25% will be fully identical.  You can read more about how much full versus half-identical regions siblings would share at ISOGG’s Wiki – Fully Identical Region page.

This is what my mother and aunt showed.

Screen Shot 2016-05-03 at 11.18.11 PMScreen Shot 2016-05-03 at 11.18.36 PM

There are only small chunks of  FIR rather than long segments of it that you would see in full-siblings.  So this confirms a half-sibling relationship.

Determining half-relationships with Polynesians

I recently got my cousin’s results to compare to my mother and my brothers.  This cousin’s father was my mother’s half-brother George, so a half-first cousin relationship.

Prior to making contact with my mother’s relatives I was thinking of having these cousins tested as a means to figure out who my mother’s biological father really was.  But a couple of months ago when I did make contact with these long lost relatives it was revealed that my mother’s biological father was Joseph Kaapuiki Akana, the man whom I doubted was my mother’s father based on his name (Akana is of Chinese origin) and the fact that my mother remembers her father being pure Hawaiian and her DNA composition does not support Chinese ancestry.  I thought that maybe testing these half-cousins would determine if their grandfather was my mother’s biological father.  But it is more complicated than I realized.

Like my mother’s father Joseph Kaapuiki Akana, George’s father was also Hawaiian.  George and my mother shared the same Hawaiian mother.

This is what the ISOGG Wiki Autosomal DNA Statistics page says about how much should be shared between a half-aunt and also to half-cousins.

Screen Shot 2015-12-29 at 7.17.17 PM

Combining with Blaine Bettinger’s Shared cM Project, the total shared for a half-aunt would range from 540cM to 1348cM, averaging 892cM.  The average is around the amount indicated by the ISOGG Wiki page.

For a half-first cousin, Blaine Bettinger’s Shared cM Project says it would range from 262cM to 1194cM, averaging 458cM.  Again, that average is what is indicated on the ISOGG Wiki page.

This is how compares my half-cousin to us.

Screen Shot 2015-12-29 at 7.33.09 PMIt is obviously on the high end, for a half-aunt while half-first cousin, not that extreme.  But we are talking of one example only.  There are more half-cousins that I could have test and probably will in the future.  And all of these cousins have had a grandfather that was Hawaiian, so I would expect their amounts to be high.

Comparing to non-endogamous groups, I compare my paternal aunt to her nephews and nieces and a great-nephew and great-niece on GEDmatch.

Screen Shot 2015-12-29 at 7.45.46 PM

My cousin Terri may share the lowest total among the 1st cousins but it does not seem that significantly different from the average 1700cM.  It is interesting to see that her largest segment is 104.7cM.  When I look at my half-first cousin and how much she shares with her half-aunt (my mother), the total is 1412.8cM, and largest segment is 103.3cM.  That figure can be misleading.  I have more cousins on my father’s side that I have yet to test and there may be other cousins who share less or more with our aunt than the cousins that have already tested.

If I take my aunt out of the equation, this is how the cousins compare to each other.

Screen Shot 2015-12-29 at 7.50.04 PM

A couple of my paternal 1st cousins share much less with each other than my half-cousin does with me and my brothers.

It will be awhile before I can get an ample amount of Polynesians who have close relatives tested to fully make a comparison.  Initially I wanted to see if testing half-cousins would help determine if my mother’s siblings were half or full siblings and when I was not certain that Joseph Kaapuiki Akana was her biological father.

It is clear now that any type of half-relationship is difficult to determine if the other parent is also Polynesian, and in our case Hawaiian.  My grandmother married 3 different Hawaiian men and so far from what I know, they have ties to geographically different places.

The endogamous nature just makes it hard to determine the relationship even if it is a close relationship.  It does not have to be a distant 3rd cousin and beyond to appear as a closer relationship.  Even with cousins (half or full) and half-siblings, they seem to appear on the higher end of the relationship, possibly giving a false prediction if the true relationship was not known.

Recent Founder’s Effect, bottlenecking and 6 Tahitian women on Pitcairn island

I finally got the autosomal results of a Pitcairn resident who has been a member of the Polynesian project for a year now.  Previously I had another member who is a Norfolk island descendant and whose ancestors moved to Norfolk but were originally from Pitcairn.  Another Norfolk descendant tested at another company, but his raw data were uploaded to in order to be compared.  Now having that this particular Pitcairn resident tested, I can make a comparison for these 3 people since they all have ties to Pitcairn.



Pitcairn was settled in 1790 by mutineers of the HMS Bounty and Tahitians1.  The initial population of 27 consisted of 9 mutineers, 6 Tahitian men and 11 Tahitian women along with an infant girl.  Only 6 of the mutineers and 6 Tahitian women would produce descendants.

1) Fletcher Christian
2) Edward Ned Young
3) John Mills
4) William McCoy
5) Matthew Quintal
6) John Adams

Tahitian women:
1) Mauatua Maimiti
2) Teraura
3) Teio
4) Tevarua2
5) Vahineatua
6) Toofaiti



The population started with 27 people but only 12 of them would produce descendants.  By 1840 the population exceeded 100, and by the mid-1850s the community was outgrowing the island3.

On May 3, 1850 the entire community left for a 5 week trip and settled on the island of Norfolk on June 8.  Nearly 3 years later 16 of them returned to Pitcairn.

Screen Shot 2015-12-21 at 9.03.27 AM



I have mentioned in previous blog entries that eastern Polynesians are genetically less diverse than western Polynesians.  So it should be no surprise that Hawaiians and Maoris as well as Tahitians will come up as closer matches to each other despite sharing common ancestors 8 centuries ago.

Now we are looking at two things.  Firstly, a founding population where only 12 people produced offspring, and half of the 12 being Tahitian women, or eastern Polynesians.  And these 12 were not paired off equally.

Screen Shot 2015-12-21 at 9.32.29 AM

They married multiple times, some of them never produced descendants with their other spouses.

Secondly, there was a population bottleneck in 1859.

Screen Shot 2015-12-21 at 9.35.35 AM

In 1856 the population expanded to 193, then the entire population left.  That population was already interrelated just 66 years after the initial 12 founding people started the population.  They all left, but 16 of them returned.  Eventually, a few more returned but the remaining population continued life on Norfolk island while the rest of the Pitcairns were starting the population again. It would take only 23 years to repopulate the island increasing the population to 250.



The Pitcairn resident descends from all of the 12 founding people.  No surprise, given that small amount plus that was just 225 years ago and 7 generations ago for this particular person.

Although I cannot show with a family tree how many times they descend from the 12 founding people due to size and the complexity of the tree, I decided to list the number of times they descend from each of the 12.

Screen Shot 2015-12-21 at 9.50.22 AM

This resident’s paternal grandparents are 2nd cousins one way, and 3rd cousins another way while their maternal grandparents were 2nd cousins two ways.  There are more ways that they are related going further back as well, but my genealogy software cannot pick up the multiple relationships and it seems to select the closest relationship but selected 2nd cousin once removed, so not sure which line it was picking up.  This person’s maternal grandfather was born on Pitcairn but there is no known genealogy for him.  For their other grandparents, here is who they descend from.  (Founding people in bold)

Paternal grandfather – Christopher Warren, son of George Warren whose mother was Agnes Christian, and Alice Butler whose mother was Alice McCoy.
Paternal grandmother – Mary Christian, daughter of Sidney Christian & Ethel Young.
Maternal grandmother – Ivy Young, daughter of William Young & Mercy Young.

Agnes Christian and Alice McCoy were 2nd cousins, great-granddaughters of Fletcher Christian and Mauatua.  Ivy Young’s parents William and Mercy Young were 2nd cousins two ways to each other.  Great-grandchildren of Edward N. Young and Toofaiti and of Fletcher Christian and Mauatua.

As confusing as it seems, you can imagine how would DNA show up.  After uploading the raw data to for further analysis, I immediately ran the “Are Your Parents Related” tool.

Screen Shot 2015-12-21 at 10.07.52 AM

It predicted 3.3 for the most recent common ancestor (MRCA).  Still not sure how to interpret GEDmatch’s MRCA estimation, but in reality, the most recent common ancestor would be their 2nd great-grandparents – Thursday October Christian II and Mary Polly Young.  And there were other Youngs as I previously mentioned and Christians as well.

When I ran my mother’s kit through that same tool, her largest segment was 13.9cM, and there were a total of 5 segments that would total 51.5cM.

Largest segment = 13.9 cM
Total of segments > 7 cM = 51.5 cM
Estimated number of generations to MRCA = 4.1

Unlike the Pitcairn resident whose largest segment was 24.7cM and with 11 segments.  My mother’s parents were from different islands and as far back as I was able to trace their ancestries, they did not intersect nor did their ancestors come remotely near to each other given that they were from 3 different islands.

I would love to get more Pitcairn residents to test, to see if there is any noticeable pattern using this tool, or David Pike’s ROH.  If there is, we definitely could use it in helping to determine a true close genetic match versus an endogamous one.



There are 2 particular matches to many of the Polynesian DNA project’s members and both of these 2 people are descendants of Norfolk residents.  I will refer to them as Norfolk #1 and Norfolk #2.

Norfolk #1’s maternal grandmother was from Norfolk and she was the daughter of Francis Nobbs and Ruth Christian.  Norfolk #2’s maternal grandfather was from there, and his parents were William Adams and Sarah Christian.

A further breakdown where I bold the founding people.

Francis Nobbs’ ancestry, son of Alfred Nobbs & Mary Christian:
Paternal grandfather – George Nobbs
Paternal grandmother – Sarah Christian, daughter of Charles Christian & Tevarua
Maternal grandfather – Benjamin Christian, son of John Buffett & Mary Christian
Maternal grandmother – Eliza Quintal, daughter of John Quintal & Maria Christian

Sarah and Maria Christian were daughters of Charles Christian & Tevarua, while Mary Christian was their 1st cousin.

Ruth Christian’s ancestry, daughter of Isaac Christian & Miriam Young:
Paternal grandfather – Charles Christian, son of Fletcher Christian & Mauatua
Paternal grandmother – Tevarua, daughter of Teio
Maternal grandfather – William Young, son of Edward N. Young & Toofaiti
Maternal grandmother – Elizabeth Mills, daughter of John Mills & Vahineatua

William Adams’ ancestry, son of John Adams & Caroline Quintal:
Paternal grandfather – George Adams, son of John Adams & Teio
Paternal grandmother – Polly Young, daughter of Edward N. Young & Toofaiti
Maternal grandfather – Arthur Quintal, son of Matthew Quintal & Tevarua
Maternal grandmother – Catherine McCoy, daughter of William McCoy & Teio

When comparing the two Norfolk descendants to the Pitcairn resident, I was surprised to see no overlapping segments.

Screen Shot 2015-12-21 at 1.36.43 PM

Screen Shot 2015-12-22 at 12.58.16 PM

It is interesting to see how for Norfolk #1, the largest segment is 40.85cM for the largest segment and a total of 134.5cM.  The largest segment is significant, and although Pitcairn & Norfolk #1 are related multiple ways, the closest known relationship makes them 4th cousin once removed.

Comparing Pitcairn to Norfolk #2, the largest segment is 27.3cM, which for Polynesians in general could be pretty distant.  Total shared is 95.1cM.  And just as with Norfolk #1, Norfolk #2 and Pitcairn are related multiple ways, but the closest relationship makes them 4th cousins.

At the moment I cannot compare Norfolk #1 and Norfolk #2, but I am trying to get one that taken care of in order to upload Norfolk #1’s raw data to GEDmatch for further analysis.

I was expecting to see the overlap at least when comparing to the Pitcairn resident given that their ancestors’ have been on the island since the beginning, but it goes to show how unpredictable and random DNA can be.

A list of all 3 and how many times they each descend from the following founding population.

Screen Shot 2015-12-21 at 1.46.23 PM

And while various Polynesians can be compared to all three of these people and may show overlapping segments, there is really no way to map these segments.  These 3 testees would match other project members based on segments inherited by one or more of these 6 Tahitian women that settled on Pitcairn.  And we all would have shared common ancestor(s) from at least 8 centuries ago.

Below I compare the Pitcairn resident to a Hawaiian, a Maori and a Cook Island Maori as well as my Hawaiian mother.  Incidentally, there is a project member whose father was from Tahiti, yet that person does not come up as a match.

(default setting)

Screen Shot 2015-12-21 at 3.40.11 PM

(1+cM setting)

Screen Shot 2015-12-21 at 3.48.43 PM


Comparing Norfolk #1 with the same people with the exception of not being a match to the Cook Island Maori.

(default setting)

Screen Shot 2015-12-21 at 3.41.18 PM

(1+cM setting)

Screen Shot 2015-12-21 at 3.51.14 PM

Norfolk #2 did not test at FTDNA but at 23andme, and although their raw data was uploaded to, all the others being compared were not uploaded except for my mother’s raw data.

For additional information about the DNA study of the descendants of the Mutiny on the Bounty, see ‘Mutiny on the Bounty’: the genetic history of Norfolk Island reveals extreme gender-biased admixture.


1. History of the Pitcairn Islands.
2. Pitcairn Settlers lists an additional Tahitian woman known as Sully, as the wife of Matthew Quintal and the mother of Matthew Jr., John, Arthur, Sarah and Jane Quintal. Another source, as well as the Pitcairn resident who got DNA tested, claims that there were only 6 Tahitian women of whom they descend from.  There was no mention of Sully, although Tevarua is listed as being married to Matthew Quintal and the parents of  Matthew Jr., John, Arthur, Sarah, and Jane Quintal.
3. Historical Population of Pitcairn.

Confirming what could have been a NPE (non-paternal event) or misattributed parentage

Another useful tool for DNA testing is to answer those questionable paternity that either was brought up by a family member or documentation may not support what is known.  This was one of the main reasons why I got DNA tested in the first place.

Quite a bit of people getting DNA tested are finding what is known as an NPE (non-paternal event) or a misattributed parentage.  That is when the presumed or putative father was not the biological father.  This could have happened either recently, a generation ago, or way beyond that to where current living people may not be aware.

This is when people need to take the extra steps by testing other family members or also getting other specific tests, such as a Y-DNA test. Sometimes it can be a Y-DNA test that makes people realize that there was an NPE.

Back in July of 2015 I figured out who my mother’s biological mother was.  Her name was Rose Kanae, and Rose was married three times.  I found that one of her husbands — Joseph K. Akana  resided at the same address where my mother was born.  So the assumption was that he was probably my mother’s biological father.  The  Akana surname is of Chinese origin, and it is what initially made me believe that he was not the biological father.  My mother was told after having met Joseph Akana once as she was 5 years old, that he was a pure Hawaiian man.

Last October a cousin confirmed that Joseph indeed was my mother’s biological father.  It was explained to me by a couple of relatives that Joseph took the surname – Akana from his Aunt who married a Chinese man surnamed Akana.  Joseph’s original name was Joseph Kaapuiki, and later he went by Joseph Kaapuiki Akana.

This same cousin who confirmed that Joseph was my mother’s biological father did question Joseph’s paternity, suggesting that Joseph’s mother Elena Kauhi was not so faithful.  This is how I was able to confirm that Joseph’s father – John Kaapuiki was his biological father.

Below is my mother’s top 5 matches.Screen Shot 2015-12-17 at 5.18.58 PM

These all say “Possible range: 1st – 2nd cousins.”  Her first match is how I was able to figure out who her biological mother was.  This is how Frank is connected to my mother.

Screen Shot 2015-12-17 at 5.23.11 PM

Frank and my mother are actually 1st cousins once removed, making Frank & I second cousins.  With females there is less ambiguity whereas with men there can always be that questionable paternity.

The second top match was “lkauhi” and this is how that person actually is related to my mother once I was able to get my grandfather’s genealogy.

Screen Shot 2015-12-17 at 5.20.32 PM

“lkauhi” is off to the right, and she matches my grandfather Joseph Kaapuiki (Akana) via his mother’s side, through Elena Kauhi.  This would confirm that Joseph is the biological father of my mother since “lkauhi’s” grandfather Johnathan and Joseph’s mother Elena were brother and sister.

One of my cousins gave me the names of our grandfather Joseph Kaapuiki Akana’s ancestors going back as far as his grandparents.  His father John Kaapuiki‘s father was Kukahuna Kaapuiki.

Further research online revealed that the Akana-Kaapuiki family listed my ancestor Kukahuna and traced it a few more generations back.  But I was not confident at first to know that any of the names beyond Kukahuna were my own ancestors.  This is the same family that I was told my grandfather Joseph took his surname from, and that they were related.  Given that they listed Kaili Kaapuiki who married a Chinese man surnamed Akana as the sister to my ancestor Kukahuna Kaapuiki, I knew that was probably the connection but could not confirm it through documentation.

I looked for the genealogy of my mother’s 3rd match “milt17th.”  I contacted him and he confirmed his genealogy, that he was the grandson of Kaili Kaapuiki and Akana.

This confirms that John Kaapuiki was the biological father of my grandfather Joseph Kaapuiki Akana.

The randomness of autosomal DNA

Now that Ancestry is able to show how many centimorgans and number of segments are shown, I was comparing my top two closest matches.  They are listed as “lkauhi” and “Frank”.  They are under the 2nd cousin category predicted in the 2nd – 3rd cousin range.

Screen Shot 2015-12-02 at 1.55.19 PM

Prior to my mother getting DNA tested, I had no idea exactly how close they would really be.   Now that my mother got DNA tested and I figured out who my mother’s biological parents were, I was able to construct a diagram.  “lkauhi” is on my grandfather’s side while Frank is on my grandmother’s side.

How Frank & “lkauhi” are related to me.

My mother Judy is a 2nd cousin to “lkauhi”.  That makes me and “lkauhi” 2nd cousins once removed.  While Frank and I are 2nd cousins, because his mother and my mother are 1st cousins.

Here is how much Frank and I share and how much “lkauhi” and I share.

Screen Shot 2015-12-02 at 1.53.14 PM

Screen Shot 2015-11-26 at 10.00.35 PM

224 centimorgans is what “lkauhi” and I share

And although my mother shares 439cM with Frank while sharing 430cM with “lkauhi” (not shown in any diagram), the amount shared seems pretty high for a 2nd cousin.  However, we are talking about Hawaiians whose ancestors have gone through repeated founder’s effect which resulted in our high shared amounts.  She in return managed to pass unto me more of her father’s DNA so that when compared with “lkauhi” we end up sharing more compared to Frank who is in my generation and on my grandmother’s side of the family.  Unfortunately my grandparents are not alive to get them DNA tested for a true comparison.

Also, both of these people have not transferred over to GEDmatch so I am unable to get a better comparison.  This reminds me of what my cousins said about how much I look a lot like our uncle, and that both my mother and I really look like my grandfather Joseph Kaapuiki.  Maybe it is something genetic?  If my mother shared a lot with “lkauhi”, it could be because we inherited more from Elena Kauhi, my mother’s paternal grandmother.

The good thing about all of this is that it confirms that Joseph Akana fka Joseph Kaapuiki was my mother Judy’s biological father, since Joseph’s mother was Elena Kauhi.  And “lkauhi’s paternal grandfather Johnathan Kauhi was a brother to Elena Kauhi.

Both of these closest matches are from each of my maternal grandparents’ side.  Frank is from my grandmother Rose Kanae’s side while “lkauhi” is from my grandfather Joseph Kaapuiki’s mother Elena Kauhi’s side.

Some Runs of Homozygosity but no relation

Last year I blogged about GEDmatch’s “Are your parents related” where it looks for Runs of Homozygosity or identical alleles on paired chromosome that would indicate a possible close relative.

But now that I have found & confirmed my mother’s biological parents, I took a look again at GEDmatch’s “Are your parents related” tool to see their predicted genetic distance.

Are your parents related?
It estimated 4.1 generations to the MRCA (most recent common ancestor).  I normally do not go by GEDmatch’s predicted estimated number of generations but in this case because I cannot determine whether 51.5cM is a lot or not, and if 13.9cM largest segment plays a pivotal role or not, I am going by their estimated number of generations.

This is my mother’s genealogy.  I italicized all females.

Genealogy1) Mahi – Ko’olau, O’ahu
2) Kumahaulu – O’ahu
3) Kaapuiki – Kapa’ahu, Puna, Hawai’i
4) Piipii – Puna, Hawai’i
5) Naea – no information
6) Kamau – Hau’ula, O’ahu
7) Ehu – Mapulehu, Molokai
8) Kalahope -Pulama, Puna, Hawai’i
9) George – Kalapana, Puna, Hawai’i
10) Laahiwa – Kalapana, Puna, Hawai’i
11) Hookano – Honomuni, Molokai

These are my Kanaka or aboriginal Hawaiian ancestors.  The people I specifically chose were at the end of my genealogy branches.  I’ve listed their known origins with the names of the place (ahupua’a), district and/or island.  The main thing to look for is that both of my mother’s parents Joseph and Rose just do not have families coming from the same areas.

My grandfather Joseph’s family was from the island of Hawai’i.  Rose’s paternal grandfather John was from Molokai as well as his wife Hookano.  Ehu was also from Molokai while Kamau was from O’ahu.  It is not clear where John’s father Naea was actually from.

The point of all this is to show how contrary to predicted closeness with all of these DNA companies and even a tool to look for ROH, that there is still no known close connection to my grandparents.

Finding a DNA connection despite endogamy


Shortly after getting my DNA results back in May 2013, I learned that majority of my DNA predicted connections are an endogamous connection.  That means a predicted connection that appears to be much closer than it really is.  Being Polynesian (Hawaiian), I am a result of generations of constant bottlenecking and founder’s effect that have occurred through the centuries.  This effect is much more pronounced among eastern Polynesians like Maoris and Hawaiians whose homeland were the last places in Polynesia to be settled.

Since my mother was adopted and both of her parents were Hawaiian, I knew it was going to be a bigger challenge.  Like other Polynesians, documentation for genealogical purpose was limited and it was not until 1860 when King Kamehameha IV passed an act to regulate names did surnames begin appearing for Hawaiians.  Even right after that, surnames appearing within families were inconsistent and it varied between families, generations (some starting it later than others) and also islands.

At FTDNA, my mother’s matches can have a total shared cM way above 300 (5 pages of those), while her longest block [largest segment] size tends to stay under 20cM.  These are the matches from her 1st page.

Screen Shot 2015-07-17 at 3.35.11 PM

FTDNA’s requirements for a match allows the tiniest segments to be included once the criteria of the longest block has been met.  But in an endogamous population, specifically Polynesians, they tend to report the number of segments to be well over a hundred.

23andme is slightly different.  At the default, the matches are sorted by relationship which is shown on the left column, while on the right column is sorted by percentage.

Screen Shot 2015-07-17 at 3.44.40 PM

This is how shows the matches.


I expected the matches at Ancestry to be not as close as they were predicted for the same reason seen with FTDNA, 23andme and GEDmatch.

1) Several matches totaled above 100cM.
2) The largest segment usually does not exceed 20cM.
3) Matches are usually Hawaiians who do not match each other at the same amounts, and Maoris of whom we share a distant connection from 800 years ago.

As I looked at the Ancestry matches and compared the predicted 2nd – 3rd, or 3rd – 4th cousin predictions and how they appeared on GEDmatch, I noticed that they would fall in a large range of  187cM – 304cM for the total autosomal shared.

At the time I was trying to compare this close relative, Ancestry did not have the option to see how much you share, unlike now where they list the total amount of centimorgans you share and the number of segments.  But still no chromosome browser to do a full comparison.  Being able to see the largest segment would be key in determining a true close or distant 2nd or even 3rd cousin relationship.

Screen Shot 2015-07-17 at 4.01.07 PM

So there are four matches in the 1st – 2nd cousin range (Extremely High) but I could not determine if they just appear to be close, or were true 1st to 2nd cousin matches.  Given the pattern with the other companies and GEDmatch,  I ignored Ancestry for over a year, until earlier this month when I reached out to my mother’s best match at FTDNA.


My mother’s best match belongs to a woman who tested at FTDNA.  They share 266.94cM (122.9cM GEDmatch) total, and the largest segment is 50cM.  A largest segment size of 50cM is a very good indicator that the relationship was not too distant.  I guessed somewhere around a 2nd to 3rd cousin.

Last year she shared her tree with me that goes back to her ancestress named Theresa Manner, the daughter of a Swiss man and a Hawaiian woman named Kama’u.  This match’s paternal grandmother and paternal grandfather were both Hawaiian.  Kama’u was an ancestress on the paternal grandfather’s side.

Back in January I began focusing on Theresa Manner’s husband’s line, especially since his family lived in the area where my mother was born.  Not to mention I had nothing else for Theresa Manner except her parents’ names, and Kama’u was the only Hawaiian that I saw in that line.

My match asked me if I thought there was a possibility that it was her paternal grandmother’s side versus her paternal grandfather’s side.  Her paternal grandmother was also part Portuguese, but since we were not getting matches with Portuguese people I excluded the paternal grandmother’s side.  Although this match and my mother share 2 segments on the X chromosome, the largest segment 10.2cM while the other 8.8cM,  I knew it had to be distant given the unpredictability of the X particularly for Polynesians.  So I ignored it and continued to focus on the paternal grandfather’s side.

At Ancestry, my mother’s closest match belongs to a man and is the first match at the top of the diagram above.  But this match’s tree did not have any names in common with any of the other top matches that we get.  No matter how many conversations I have had with this closest match at Ancestry, although all prior to my mother revealing to me in August 2014 that she was adopted, I still was unable to find any close connection.  Given the endogamous history and the fact that we just lack genetic diversity, it seemed more of a validation that the match was not as close as it appeared to be.


I also focused on my mother’s ancestry, which points to two basic ancestries.   East Asian and European.  Her Polynesian portion is usually represented by the East Asian and Oceanian categories combined.  Some companies such as FTDNA’s “myOrigins1” have lumped Oceanian under their East Asia category which previously their “Population Finder” separated them.  23andme also separates the two categories while AncestryDNA recently created a category called Pacific Islander (Polynesia).  Below are the results from those companies including analysis from Dr. Doug McDonald2.  For simplification I combined the Oceanian with East Asian.

Screen Shot 2015-07-17 at 4.27.09 PM

81.72% = East Asian/Oceanian
17.32% = European

This next diagram shows 23andme’s chromosome view.  My mother’s X chromosome was just East Asian/Oceanian in origin.  Dr. Doug McDonald also had a chromosome view and he too found that it was only of East Asian.

Screen Shot 2015-07-17 at 4.23.03 PM

Knowing the X inheritance pattern, plus the amount of European percentage that my mother has, I tried to calculate who would have been the most likely European  ancestor that married a Hawaiian.  If not European, then of European descent. So I had a few clues that helped me determine how to figure out who that was.

1) My mother recalls meeting her biological father at the age of 5, and claims that he was pure Hawaiian.
2) Our mtDNA haplogroup is B4a1a1a33, a subclade of the Polynesian motif B4a1a1, indicating our direct maternal line as Hawaiian.
3) The odd percentages is probably the result of more than one ancestor being of European and Hawaiian ancestries.

Given those details, I constructed this diagram which would be the likely scenario of how my mother got her European and Hawaiian ancestries.

Screen Shot 2015-07-17 at 4.55.03 PM 

I thought that looking for her European ancestors would be easier to trace given the few early European (or American of European descent) arrivals in the Hawaiian Kingdom.  Unlike with Hawaiians whose DNA results produce closer predicted relationships than they really are.

I calculated both 18 years per generation in that diagram and 25 years for each generation.  The 25 year estimate took me to 1868 from my mother’s birth year of 1943, and back to a 50% European/Hawaiian person in that diagram.  Theresa Manner was born in 1866, so now I was confident that this could be very useful in tracing my earliest Hawaiian/European-descent ancestor.

Comparing this diagram to Theresa Manner and knowing that the estimates of the dates were very close, I realized that I did not go back far enough.  Although the predicted 50cM largest segment for a 2nd to 3rd cousin was good, it was best to be sure to go even further.


My match at FTDNA also revealed that her father’s Y-DNA results showed a European haplogroup rather than a haplogroup indicating Polynesian origins of which her father has a direct male Hawaiian line.  Given this new information and not knowing where this NPE (non-paternal event) could have occurred, either with her father or her grandfather, or even further back,  I immediately excluded this line.  This was the same line I was previously looking into back in January, focusing on Theresa’s husband and their children and her husband’s siblings and their children.  Although still, that would not tell me for sure if that was my mother’s paternal or maternal side.

Screen Shot 2015-07-17 at 8.42.11 PM

I realized how I was ignoring Theresa Manner, whose father was a Swiss and he married a Hawaiian woman named Kama’u.  I asked my match if  Theresa Manner had any other siblings.  Previously my match only shared Theresa’s parents, and Theresa’s husband and their children.  Again, because of the 50cM largest segment prediction, assuming it was pretty close, that I did not have to go back further.  But I knew that Theresa Manner was an important clue since she was half European (Swiss father) and half Hawaiian and was born in 1866.  That fit into the year I predicted from the diagram that I created in order to come up with the estimated 1868 birth for a male ancestor that was 50% Hawaiian and 50% European.  I was told that Theresa not only had 3 other siblings, but also 2 half-siblings.  They were Robert Holbron and Mereana (Mary Ann) Holbron.  Kama’u was previously married to John Holbron from England.

I thought that name Robert Holbron seemed familiar.  Since several of our top matches at Ancestry had public trees, I went back there to look and saw that the very top match of whom I have had correspondence with last year listed in his tree Robert Holbron and his wife Annie Ludlum as his ancestors.  This match is in the predicted range of 1st – 2nd cousins, although as mentioned previously, it may or may not have been a true 1st – 2nd cousin relationship.  But the fact that both of these matches had Kama’u in their line and of whom was probably the one responsible for passing on that large 50cM segment, I knew I found my ancestors.

With this new information things fell into place.  I referred to the diagram I created and it seemed that Robert was the more likely candidate to fit into what I had constructed as my possible ancestors.  But to be sure, I looked into his sister’s descendants first.  Mereana Holbron married an Irish man, lived in Ireland and in Hawaii.  But Robert appeared to fit the pattern I mapped out more than his sister, although his wife Annie had a surname of Ludlum, which indicated that she was an admixed Hawaiian unlike in my diagram.  But even with her being half, I knew that her mother was Hawaiian based on the fact that if Annie were my ancestor, her mother would have passed on my B4a1a1a3 directly to Annie and down to females.  And that matched up with my diagram.  My match’s tree at Ancestry listed Annie’s parents as William Ludlum and Ehu, which confirmed that Annie was half Hawaiian and of half European descent.  Later, I would find that both Robert and Annie’s estimated year of birth fit the diagram and predicted year of birth only off by 13 years.

While going through several of the old Hawaiian newspapers I found an article with a photo of Mrs. Annie Holbron celebrating her 100th birthday.

From Frank Hewett's site:

Annie Ludlum


I continued looking into Robert and Annie’s children and grandchildren.  I focused on their oldest daughter Rose Holbron and her husband Frank Kanae, and who our top match at Ancestry descends from.  And although I made sure I covered many of the collateral branches, I still used as a guide the diagram I created to guide me into which branch it could be.  And it took me to Rose & Frank’s 3 daughters.

While looking for their descendants and who they married, one of them had a photo uploaded into their tree on Ancestry,  and I saw the striking resemblance not only to my mother but also to my sister. I found information on her husband and children and she had one child born just a month before my mother was born.  So it seemed unlikely that this was my mother’s biological mother.  This is on the assumption that my mother’s birth date on her “legal birth certificate” is her actual birth date.  I could only assume that it may have been one of the other two sisters who was my mother’s biological mother based on the fact this woman looked like both my mother and sister.

I definitely found the right family for my mother’s maternal side.  It would be only a matter of time before I find out if the woman whose photo I found was my mother’s biological mother, or her mother’s sister.


My mother’s legal birth certificate left questionable details since I began researching 26 years ago. It was because it did not indicate that it was an adoption, unlike my own birth certificate which clearly states that it is an adoption. What was known and is clearly indicated on my mother’s birth certificate.

  • Birth was not a hospital or institution but at a residence – 1301 Liliha St. (Honolulu)
  • A midwife was present, attested to witnessing the birth of Julia Kawewehi Scott [adoptive mother].
  • Usual residence of mother was 440 N. King St,  which was the permanent residence of both parents.

I spent several years looking into the address where my mother was born. I even tried to track down people who lived at the same address hoping to find someone who was alive at the time my mother was born and may know something about her birth mother.

Now that I have found the branch that we come from, again I continued to look into Rose Holbron and Frank Kanae’s daughters.  I already found one with a photo who resembles my mother and sister.  Another daughter I found was married several times, and had children from possibly more than just her own husbands, but this is based on surnames.  Her name was Rose Kanae, and her first husband was surnamed Kalei.  Her second husband was Joseph Akana, which can be a semi-common name.  A lot of Akanas, but not all are related to each other from what I saw with their last known ancestor to some of the Akanas that I found.  That surname comes from a Chinese who either became a Hawaiian citizen or just Hawaiianized his name.  That surname caught my attention and made me think about it for a bit, but given that I had done a lot of genealogy I know and do remember seeing that name and reading about that surname in other Hawaiian genealogy forums.  Then after Joseph Akana, Rose married a third time.  All of those husbands gave her children.

I was surprised to find in the city directory of 1947, that Joseph Akana lived at 1301 Liliha Street.  This was the same exact address where my mother was born.  So either this woman got pregnant from another man and Joseph Akana divorced her, or her sister got pregnant and gave birth at their residence.

Screen Shot 2015-08-01 at 5.13.28 PM

At the same time I found the photo of the woman who could be my mother’s biological mother, my mother called to tell me that she received her non-identifying form from the First Circuit Court in Kapolei, O’ahu, Hawai’i.  This form just gives adoptees little information into their background and every state and court has their own way of determining what will be revealed.  For Hawaii, it is the ancestry.

When I received a copy of it, it indicated that my mother’s mother was Hawaiian and Chinese while her father was Chinese Hawaiian.  However, DNA does not support that.

Non-Identifying Form - letter form

Non-Identifying Form – letter form

But given the non-ID form indicating Chinese, although incorrect, this was pointing to Joseph Akana and Rose Kanae as the parents listed.  Joseph Akana’s surname was the only clue that made me believe he was not the biological father.  I had even suspected that there may have been a question of paternity with Joseph Akana and what may have caused my mother to get adopted, hence Joseph divorcing and my grandmother remarrying.

I was also told that back then, no matter which state, particularly for unwed mothers, if the biological mother knew who was going to adopt the child, she might take on the identity of that woman and check into the hospital as that person.  The woman who adopted my mother – Julia Kawewehi was Hawaiian and Chinese.  So I assumed this is what happened unless Rose Kanae really did not know her ancestry.  The DNA evidence indicates a near perfect 70% East Asian to 30% Oceanian component consistent of Polynesians4.  Whereas those who have some Asian ancestry in addition to Polynesian, the percentage of East Asian to Oceanian would be much more significant than 70%.  Therefore either the parents listed in the adoption files really are not her parents or they were just wrong with the ancestries of the parents.


After getting more details on my maternal grandmother Rose Kanae’s branches, I was able to see exactly all of the foreign men who married Hawaiian women in her line.

1) Oliver Holmes, (later Hawaiianized to Oliva Homa) an American who arrived on the island of O’ahu in the Sandwich Isles on October 8, 1793 on board the Margaret, who was in service of the chief Kalanikupule.  After Kalanikupule’s death in the Battle of Nu’uanu, Holmes married Mahi, the daughter of the high chief of Ko’olau5 whose name was Kalaniulumokuikekai6.  After Kalanikupule was defeated by King Kamehameha, along with Mahi’s father Kalaniulumokuikekai, Oliver and others were taken by Kamehameha and became advisors for the King.  In 1810 after King Kamehameha united all the islands, Oliver became the 3rd Governor of O’ahu.  Governor Homa, as he was called, remained in Honolulu and had one son and five daughters.  One of the daughters – Hannah Holmes married Captain William Heath Davis Sr, and their son William Heath Davis, Jr. ended up in California in San Francisco and was also one of the original founders of New Town San Diego7. Oliver’s other daughter Polly married Captain Isaiah Lewis and it was said that she traveled with him to the northwest coast.  Oliver had three other daughters, all of whom married captains of ships coming into the Hawaiian islands.

2) Captain Isaiah Lewis, an American and son-in-law of Oliver Holmes.  He commanded the Panther, and acquired sandalwood in Hawaii and sold it in Canton, China.  He married Polly Holmes, the daughter of Oliver Holmes & Mahi.

3) William Ludlum, an American whaler from Jamaica, Queens, New York who became a citizen of the Hawaiian Kingdom on August 7, 1850.  He married a Hawaiian woman named Ehu on January 24, 1850 in Mapulehu, Molokai.  He ran a hotel & was a Commission Agent.

4) John Holbron [John Halborn/Holborn], originally from Hull, England arrived in the 1840s.  He married a Hawaiian woman named Kama’u and became a citizen of the Hawaiian Kingdom on November 24, 1845.  He was a merchant.

After knowing for sure who these foreigners were, I was able to re-design that diagram and came up with new percentages of each ancestor.
EA/Ocean = East Asian/Oceanian

Screen Shot 2015-08-05 at 3.23.35 PMThe light blue represents the male, the pink the female, and the bottom is my mother of which is calculated 14% European and 85% East Asian/Oceanian.  My mother’s results fall into that range of 14% – 19.81% European and 80.18% – 85% East Asian/Oceanian.


While my match at FTDNA did share 2  X segments with my mother (via her father of whom both of his parents were Hawaiian), the fact that I ignored it because of how unpredictable the X is lead me on the right path.  The largest segment size is 10.2cM  and the other is 8.8cM.  I have seen how a significant amount of X my mother shares with other Polynesians (i.e. Samoans, Tongans & Maoris) can be so distant.

While it can be useful in excluding certain branches, this is obviously not the case for endogamous groups, particularly not for Polynesians.  Had I focused on the X path, I would not have made the connection at all.  But it is not surprising that this male shares a distant X match with my mother on his mother’s side yet not have a recent tie to my mother on his maternal side, at least not that I have figured out just yet.


My friend Charles Ano who have helped me with genealogy searches in the past decided to look up birth announcements in the newspaper around the time that my mother was born based on all of this information that I found.

Screen Shot 2015-11-06 at 2.02.39 PM

Birth Announcement – Honolulu Advertiser – Sept 28, 1943

It listed her original name – Joyce Awapuhiokala (Akana).  I did not want to reveal this to my mother just yet since I completed the last step of accessing her adoption records just the other week.  I wanted my mother to receive copies of the actual adoption files and see for herself who they listed as her parents and her original name.

Eventually my mother found out that I knew of her original name, and after I got a chance to speak to her about it, she told me that she already knew she was born Joyce  and that she was related to the Akana family, and also had a Hawaiian name, but she did not know what that name was.  She was about 9 years old when she found out about all of this.

I did tell her that I remember her mentioning the surname – Akana.  And I knew that when I found Joseph Akana, there was something about that name that seemed familiar but could not remember exactly.  I later realized it was last year after almost giving up on DNA and before resorting to accessing her adoption files via the court, I had turned to the 1940 census, just three years before she was born and looked for the place where she was born.  It was at that time I asked her about the family names, people who lived at that address where she was born to see if it seemed familiar. None did, but it was at that time when she asked, “what about Akana?”  I never asked her much more about it, but remember she did comment about how she heard that was her family.  Unfortunately, I forgot about this important clue.


Now knowing my mother’s original name, I decided to seek out my cousins, children of my mother’s siblings.  I already saw names of some of them based on the obituaries I found of my mother’s siblings.  I first contacted a woman whose surname matched my mother’s brother and with whom I already had contact with because at the beginning of accessing my mother’s adoption files I simultaneously tried to get my original birth certificate since my adoption was done at another court.  My adoption was a technical issue.  The mother that I speak of is my biological mother.  It turned out that this contact is a granddaughter of my mother’s brother.  After sharing with her who my mother is, what name she was born, who her parents are and identifying the other siblings based on what I found in the obituaries, she notified both her grandfather and a sister living on another island.  I sent photos of us and she shared it with her great-aunt and grandfather.  She remarked at the strong resemblance of my mother and her great-aunt.

At the same time, I found another cousin on Facebook, contacted our mutual friend and that friend revealed how this cousin probably knew my mother.  Turns out that this cousin and my mother have known each other for the past 6 years.  This cousin also told my mother at first meeting her 6 years ago that she reminded her of his aunt.  This was the same person that the other woman commented of how my mother looked like her great-aunt.

In a few days after having other cousins contacting me, they revealed the entire story of how our grandmother Rose Kanae married three times, and with her husband Joseph Akana she had four children.  A daughter who carried the surname KALEI which was the surname of Rose’s first husband.  Another daughter and of whom is the only sister to my mother that is alive, the one who we are told my mother looks like.  Then a brother and finally my mother.  Then with the last husband, Rose had two sons.  The youngest is alive and whose granddaughter I first contacted.

Only the sister that is still alive and one of the younger half-brothers were the only two children that were not given up for adoption.  The other seven children were all given up for adoption.  The older ones knew of my mother’s existence.  But what they knew was that they had a sister named Joyce Akana who was given up for adoption by a Filipino family.  My mother’s adoptive father was Filipino.

Then it was revealed to me how Joseph Akana really was my mother’s father, but Akana is a surname he took on later in life and was the surname of his paternal aunt’s husband.  His original name was Joseph Napua Kaapuiki and was a pure Hawaiian man just as my mother remembered.  And Joseph did frequent the area and since my mother grew up right by where she was born, it is no surprise that she actually did encounter her father.

And as difficult as this was given the situation with Polynesians and endogamy, it can still be done.  It would just mean that every match, especially when it comes to geographic location should be scrutinized in order to determine a really close match or not.

I was there on November 1, 2015 when my mother and her sister Stella got to meet each other.


My mother Judy on the left, with Aunty Stella on the right.

This blog entry was edited after new evidence confirmed my mother’s paternity and after she was reunited with her sister.  In May 2016 my mother received her adoption files which listed her biological parents as Joseph Akana and Rose Kanae, listing my mother’s name as Joyce Awapuhiokala Akana aka Joyce Awapuhiokala Kanae.




1. MyOrigins v1 May 2014 – April 2017.  MyOrigins v2 separated the Oceanian from the East Asian and currently Oceanian falls under the broader Central/South Asia category.
2. Dr. Doug McDonald developed a the Biogeographical Analysis software and was contracted with Family Tree DNA to write the underlying code for their Population Finder ethnicity software.
3. Phylotree build 17 currently is B4a1a1c.
4. Population Genetic Structure and Origins of Native Hawaiians in the Multiethnic Cohort Study shows that autosomal results for Native Hawaiians consist of 68% Southeast Asian and 32% Melanesian components.
5. Day, A. Grove. (1984) History Makers of Hawaii. Honolulu: Mutual Publishing of Honolulu. pp. 53.
6. Honolulu Star-Bulletin – Monday, June 20, 1960: Tales About Hawaii – Oliver Holmes Founds a First Family.
7. William Health Davis, Jr.

East Asian category for Polynesians

My mother told me today that she received from the First District Circuit Court that handled her adoption, the non-indentifying form, which is where it lists her biological parents’ ancestries.  They indicated that both parents are Hawaiian and Chinese.  I find that to be an error since my mother had her DNA tested at 3 companies.  Maybe that was based on an assumption or the biological parents may not have known too much about their ancestries.

At the age of 5, she met her biological father and described him as a “pure Hawaiian.”  This made sense since she gets the following percentages from each company.

Screen Shot 2015-07-13 at 3.25.31 PM


So this meant that one parent was just Hawaiian while the other parent was admixed with some European.  Based on all the companies she has tested with and analysis [from Dr. McDonald], my mother gets the following averages.

European = 16%
Oceanian = 25%
East Asian = 55%

Those are based on 23andme, FTDNA’s old Population Finder and Dr. McDonald’s analysis.  FTDNA’s current myOrigin lumped their former Oceania category under Southeast Asia, or the more broader East Asian category.  AncestryDNA however created a Pacific Islander category with the subgroups Polynesia & Melanesia and between myOrigins and Ancestry, the average total is 83%.

In reality, the East Asia category is just one of two components that make up the genome of Polynesians.  The other is Melanesian/Papuan (Oceania).  For Polynesians, autosomally they are 79% East Asian and 21% Melanesian1.

In Population Genetic Structure and Origins of Native Hawaiians in the Multiethnic Cohort Study they applied ADMIXTURE on genome-wide SNP data to finely estimate the degree of admixture in Native Hawaiians.  They found that with Native Hawaiians, “an average of 32% and 68% of their genomes to be derived from Melanesian and Asian origins, respectively”.  But that “[r]ecently, Kayser et al. surveyed the nuclear genome with 377 microsatellite markers in 47 Pacific Islanders and identified 79% Asian and 21% Melanesian proportions of ancestry for Polynesians.”

So while other studies revealed that Polynesian genome consist of 79% Asian and 21% Melanesian components, the study with Hawaiians averaged 32% Melanesian and 68% East Asian2.  The higher amount of Melanesian could be attributed to the repeated bottleneck effects throughout the centuries specifically for eastern Polynesians, i.e. French Polynesians, Rapa Nui, Cook Island Maoris, Maoris from New Zealand and Hawaiians.

My mother averages 25% Oceanian and 55% East Asian.  The two combined equals 80%.  25% (Oceanian) is 31% of the entire Polynesian (80%) percentage.

Just over a year ago I was going through my mother’s matches on GEDmatch and began running their kits through various admixture tools to see their totals of Oceania versus East Asia.  I wanted to see if they fell within the 27% to 32% Melanesian/Papuan/Oceanian.

Screen Shot 2015-07-13 at 5.20.34 PM

This is only a partial list.  There are more lines on the bottom but I am just showing the first several.  I use various calculator admixture tools at GEDmatch that had the specific Oceania/Papuan/Melanesian category.  Dodecad World9 uses “Australian” instead. I created a column that totaled the average.  And the columns to the right of that shows those who tested at other companies and their Oceania percentages.  What is not shown in the list is the proportion of East Asian that would prove it does fall within the 27% – 32% Oceania.

The first row (in red) belongs to my mother, followed by my averages and then my brother’s.  The following lines in bold are for those at least 95% Polynesian.  I took the lowest and the highest percentages of Oceanian to see if it falls within the range consistent with the research.  Since these admixture calculators did not have just a single East Asia category alone, I listed the other categories that are known to split off from the East Asia category.

Eurogenes K9b
Oceania = 17.74%
Southeast Asian = 48.87%
Northeast Asian = 13.32%
Native American = 1.55%

Adding the Southeast Asian, Northeast Asian and Native American categories total 63.74%.  17.74% Oceanian makes up 27.8% of the total (East Asian compiled categories) of the Polynesian genome.  Consistent with the research.  Looking at the highest percentage.

MDLP World
Melanesian = 20.78%
East Asian = 56.31%
Artic Amerind = 1.65%
Mesoamerica = 0.13%

There was an Indian category showing 3.74%, but I did not add that in.  Adding it, changed the overall percentage to 33%, but leaving it out made it 35.7% of the Polynesian portion. For the others listed on that list, they also picked up a small 1 – 3% of the Indian category, and leaving it out made their average 30%.  If I look at the average column for all the admixture calculators for my mother, it comes out to 30%.

But what happens when there is a higher percentage of East Asian?  In my case, it is higher because my father was Filipino. My portion could easily be verified simply by removing 50% (my father’s contribution) from my average total of 85% East Asian giving me 35% East Asian that would be my Hawaiian/Polynesian side.  My average (GEDmatch) showed 32%.

There are many Hawaiians admixed with Chinese, Japanese, Filipino or Korean, being that they were all immigrant groups to the Hawaiian islands.  Are you able to tell if they have an Asian admixture?  Can it be distinguished from the East Asian that is part of the Polynesian genome?  This is something I have been seeing more now particularly with adoptees.

Any excess East Asian percentage  compared to the Oceanian percentage [79% to 21%], would indicate that the person is admixed with some other Asian ancestry.  Since my mother’s genome does not indicate any more East Asian than what it should for Polynesians, it is clear that she does not have any additional Asian ancestry.


1. Genome-Wide Analysis indicates More Asian than Melanesian Ancestry of Polynesians
2. Population Genetic Structure and Origins of Native Hawaiians in the Multiethnic Cohort Study

Botocudo ancient DNA sample uploaded on GEDmatch

Felix Immanuel, a software professional at Hewlett-Packard based out of Canberra, Australia who has a Bachelor of Engineering in Computer Science and a Master of Science in Forensic Computing and Cyber Security from University of South Australia, has been uploading a bunch of ancient DNA to  The most recent uploads were samples taken from skulls of two extinct Botocudo (Brazil) men.  I blogged about it in December 2014.

At that time, they hypothesized a few ways how the Polynesian motif could have made it into the genome of these now extinct Botocudo tribe.  But recently in Two ancient human genomes reveal Polynesian ancestry among the indigenous Botocudos of Brazil (, they talk about the hypotheses again and how they came to the conclusion that these samples are definitely Polynesian.

One thing that was consistently repeated, was how the skulls analyzed had no detectable Native American ancestry.  They say, “[w]e find that the genomic ancestry is Polynesian, with no detectible Native American component.”   That “all the genetic data point towards two individuals with Polynesian ancestry and no detectable Native American ancestry.” And they continued again saying that a “clustering analyses suggest that they have no detectable Native American ancestry and share the same components as the Polynesian population.”

The two male individual samples used, known as Bot15 and Bot17, presented a combination of mitochondrial DNA (mtDNA) variants common in present day Oceanian populations.

They pointed out a few hypotheses that was mentioned in the other paper, and that “the 1862-1864 AD Peru-Polynesia slave trade can be excluded, given that the 14C calibrated dates for the skulls predate the beginning of this trade.”  Because these skulls have been radiocarbon dated, the dates that they came up for Bot15 was 1479 – 1708 AD and 1730 – 1804 AD, and for Bot17 was 1496 – 1842 AD.  So the fact that the Peru-Polynesia slave trade occurred after the death of these people excluded the hypothesis that Polynesians were brought over during that slave trade.

Also, the Madagascar-Brazil slave trade hypothesis has been excluded due to the recent genomic data that demonstrated that the Malagasy ancestors admixed with African populations prior to the slave trade, and no such ancestry is detected in the Botocudo sample.  Madagascar was peopled by Southeast Asian and not Polynesian populations.

And finally, trade involving Euroamerican ships in the Pacific only began after 1760 AD.  By 1760 AD, both Bot15 and Bot17 were already deceased with a probability of 0.92 and 0.81, respectively, making this scenario unlikely.

These two samples analyzed had no Native American component detected.  Felix was able to extract SNPs from the raw data to come up with C-PH3092, and  C-Z31878, which are Melanesian in origin and the C haplogroup is common in eastern Polynesia.  The mtDNA haplogroups were B4a1a1a and B4a1a1.  B4a1a1a is pretty common throughout Polynesia especially in eastern Polynesia.  And most importantly these samples are a match only to eastern Polynesians.  There is no doubt that these particular samples are Polynesians.  Question is, how did they get there?  Did they manage to produce offspring with the local Botocudo groups like the Crenaques, Nac-Nuc, Minia-Jirunas, Gutcraques, Nac-Reques, Pancas, Manhangiréns or Incutcrás?  Or did they have offspring but they never survived?  Were these samples that were found the actual people who traveled directly from Polynesia?  Or did they arrive as a group and intermarried within their own group of Polynesians but later were found among the other Botocudo people?   And why travel thousands of miles over mountains and crossing rivers, possibly going through or bypassing the Pantanal that borders Bolivia and Brazil and continue to head towards the east?

We have other evidence like the kumara [sweet potato] or ‘uala [Hawaiian word for sweet potato] that originated from South America, and not to mention our many oral traditions of all the famous travelers who went abroad to Kahiki [foreign lands; Tahiti] and towards ka hikina [the east] where the rising of the sun is.  Travelers like Kuali’i, Hema, Kaha’i, Wahieloa, Laka and Luanu’u. Now DNA is showing the scientific community what we have known based on our oral traditions.

Now that Felix uploaded both of these samples up on, we see that both of the samples matches a few of us [both admixed and non-admixed] Hawaiians (including my mother), Maori, and a Cook Island Maori.  No surprise that eastern Polynesians are a match, given how they lack genetic diversity much more than the older western Polynesians. But it may also suggest, if not confirm, that it was specifically part of the expansion of eastern Polynesians.  But was there another expansion that late in the 1600s?  Another not so surprising thing about these matches is that there may be small segment matches, but when utilizing GEDmatch’s graph when comparing ONE TO ONE, we can still see small segments of full identical region for a few of these matches.

Kit # F999964
mtDNA – B4a1a1
Y DNA – C-Z31878 (C1b2 [2015])

Kit # F999963
MtDNA – B4a1a1a
Y DNA – C-PH3092 (C1b2 [2015])

You can check out Felix’s blog for other ancient DNA uploaded.

Also the supplemental information can be accessed here.


1. Y haplogroup C Botocudo sample is carbon-dated to 1419-1477 AD – Ray Banks